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Abstract. We show that in a Morse local-to-global group where stable sub-

groups are separable, the product of any stable subgroups is separable. As an

application, we show that the product of stable subgroups in virtually special
groups is separable.

1. Introduction

Given a group G, we can equip it with the profinite topology, whose basic open
subsets are cosets of finite index subgroups of G. A subset of G is said to be
separable if it is closed in the profinite topology on G. The group G is called
residually finite if the trivial subgroup is separable in G.

Knowing that particular subsets of groups are separable often gives useful infor-
mation about the group. For example, in a finitely presented group, separability of
a finitely generated subgroup gives a solution to the membership problem for that
subgroup. In a geometric setting, separability properties of the fundamental group
of a space correspond to desirable lifting properties of that space: immersed sub-
complexes of a complex X may be promoted to embedded ones in a finite sheeted
cover of X, provided that their corresponding subgroups are separable in π1X. For
an example involving subsets rather than subgroups, it has been proven that if X
is a nonpositively curved cube complex in which every double coset of hyperplane
stabilisers is separable in π1X, then X has a finite sheeted special cover [HW08].

It is a difficult problem to show that a given subset of a group is separable,
especially when one is only given some geometric data about the group. For in-
stance, even the question of whether hyperbolic groups are residually finite is a
long-standing open problem. It is known that all hyperbolic groups are residually
finite if and only if every quasiconvex subgroup is separable in every hyperbolic
group [AGM09]. Minasyan showed that if G is a hyperbolic group in which every
quasiconvex subgroup is separable, the setwise product of any finite number of qua-
siconvex subgroups is also separable in G [Min06], extending a result of Ribes and
Zalesskii, who proved the same result in the case G is free [RZ93]. Recently, the
first author and Minasyan provided generalisation of this result in the setting of
relatively hyperbolic groups [MM22]. In this paper, we will provide another natu-
ral generalisation of this product separability result to the class of groups with the
Morse local-to-global (MLTG) property.

Introduced in [RST22], the MLTG property roughly speaking requires that quasi-
geodesics with hyperbolic-like properties behave similarly to quasigeodesics in hy-
perbolic spaces. Consider the following two perspectives on hyperbolic spaces. The
first involves Morse geodesics: we say that a quasigeodesic is Morse if any other
quasigeodesic with the same endpoints stays uniformly finite Hausdorff-distance
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from it (see Definition 2.2). It is a well-known fact that every quasigeodesic in
a hyperbolic space satisfies the Morse property, and moreover that a space is
hyperbolic if and only if all of its geodesics are uniformly Morse [Bon96] (for a
discussion on uniformity, see Section 10 in [CM19]). This motivates the study
of Morse quasigeodesics in spaces that are not hyperbolic, an approach that has
been successful in understanding the properties of spaces up to quasi-isometry
[CH17, IM21, GKLS21, CRSZ22, QR22]. On the other hand, Gromov showed
that a space is hyperbolic if and only if all of it local quasigeodesics, i.e. paths
that are quasigeodesics on every subpath of a certain length (see Definition 2.1) are
globally quasigeodesics. The Morse local-to-global property puts these two perspec-
tives together and prescribes that all paths that are locally Morse quasigeodesics
are globally Morse quasigeodesics.

In groups with the MLTG property, elements acting on Morse geodesics behave
“as they should”. For instance, it is appealing to think that given two independent
infinite order elements with Morse axes, then it is possible to use a ping-pong
argument to generate a free subgroup using these elements. In general finitely
generated groups this is not true, and we require the MLTG property in order to
run such arguments. The above suggests that the failure of the MLTG property
seems to imply some pathological behaviour. Indeed, the only known examples of
groups without the MLTG property are not finitely presentable. On the other hand,
many well-behaved classes of groups, such as 3-manifold groups, CAT(0) groups,
and mapping class groups are known to satisfy the MLTG property.

Our main theorem is concerned with separability of products of stable subgroups.
Stable subgroups were introduced by Durham and Taylor, who showed that the
convex cocompact subgroups of the mapping class groups are precisely the stable
ones [DT15]. For infinite cyclic subgroups the notion of stability and fixing a Morse
quasigeodesic agree, and in general stable subgroups present many properties akin
to quasiconvex subgroups of hyperbolic groups.

Theorem 1.1. Let G be a finitely generated group with the Morse local-to-global
property, and suppose that any stable subgroup of G is separable. Then the product
of any stable subgroups of G is separable.

Recall that a group is LERF (locally extended residually finite) if every finitely
generated subgroup is separable. The following statement may be of more general
interest, for instance as a criterion for showing that a given group is not LERF. As
stable subgroups are always finitely generated (see Lemma 2.8), the hypotheses are
stronger than the above theorem.

Corollary 1.2. Let G be a finitely generated LERF group with the Morse local-to-
global property. Then the product of any stable subgroups of G is separable.

A group is virtually special if it is has a finite index subgroup that is the fun-
damental group of a special cube complex. Triple cosets of convex subgroups in
virtually special groups are known to be separable [She23]. We extend this result
to arbitrary products of stable subgroups, which are quasiconvex.

Corollary 1.3. Let G be a virtually special group. Then the product of any stable
subgroups of G is separable.

Strongly quasiconvex subgroups, also known as Morse subgroups, were intro-
duced independently by Genevois and Tran [Gen19, Tra19], and Tran showed that
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a subgroup of a finitely generated group is stable if and only if it is strongly qua-
siconvex and hyperbolic [Tra19, Proposition 4.3]. In the case of right-angled Artin
groups, which contain many stable subgroups [KMT17], we can use [RST23, Corol-
lary 7.4] to deduce the following.

Corollary 1.4. Suppose that Γ is a finite connected graph, and let AΓ be the
associated right-angled Artin group. Then the product of any strongly quasiconvex
subgroups of AΓ is separable.

1.1. Acknowledgments. The authors are grateful to the support of the CRM in
Montréal where part of this work was completed. We would like to thank Sam
Shepherd for interesting conversations on the topic, and the anonymous referee for
their careful reading of the paper.

2. Preliminaries

Let us establish some notational conventions. Given a group G and subgroup
H ⩽ G, we will write H ⩽f G when H has finite index in G. If g ∈ G, we will use
Hg to denote the conjugate subgroup gHg−1.

For a metric space X and points x, y, z ∈ X, we will write

⟨x, y⟩z =
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
for the Gromov product of x and y with respect to z. When X is the Euclidean
plane, ⟨x, y⟩z is exactly the distance between z and the points of tangency on an
incircle for the triangle with vertices x, y, and z. The Gromov product thus acts as
a vague analogue for the notion of the angle spanned by two geodesics issuing from
a single point in a metric space.

In this paper, we will restrict our attention to Cayley graphs of groups. Let G
be a group and S a generating set for G. The Cayley graph of G with respect to S
is the graph Cay(G,S) with vertex set G and elements g, h connected by an edge
if either gh−1 ∈ S or hg−1 ∈ S.

We equip the set of vertices of a graph with the metric induced by declaring all
of its edges to have length one. For a Cayley graph Cay(G,S), we write dS for this
metric, which is exactly the word metric on G with respect to S. For g ∈ G, we
will write |g|S = dS(1, g).

Given a path γ of a graph, we will denote its length (i.e. number of edges) by
ℓ(γ). Given metric spaces (X,dX) and (Y, dY ), a (λ, c)-quasi-isometric embedding
is a map f : X → Y such that the following holds for any pair x, y ∈ X.

1

λ
dY (f(x), f(y))− c ≤ dX(x, y) ≤ λdY (f(x), f(y)) + c.

A (λ, c)-quasigeodesic is a (λ, c)-quasi-isometric embedding of an interval I ⊂ R.
The main geometric definition of the paper is the Morse local-to-global property.

To define it, we need to define the Morse property and what is means for a given
property of a path to be local.

Definition 2.1 (Local property). A path γ : I → X is said to L-locally satisfy
a property P if each subpath of the form γ|[t1,t2] with t2 − t1 ≤ L satisfies P .
When a path γ is L-locally a (λ, c)-quasigeodesic, we say that γ is a (L;λ, c)-local
quasigeodesic.
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Definition 2.2 (Morse quasigeodesic). Let M : R≥1 × R≥0 → R≥0 be a non-
decreasing function. A quasigeodesic γ : I → X is M -Morse if for any (λ, c)-
quasigeodesic segment η : [a, b] → X such that η(a) = γ(t1), η(b) = γ(t2) we have

dHaus(γ|[t1,t2], η) ≤ M(λ, c),

where dHaus denotes the Hausdorff distance. We say that γ is an (M ;λ, c)-Morse
quasigeodesic, and M is its Morse gauge.

Morse geodesics in any geodesic space satisfy a thin triangles condition, similar
to geodesics in a hyperbolic metric space.

Lemma 2.3 ([Liu21, Lemma 3.6]). Let X be a geodesic metric space and suppose
that p and q are M -Morse geodesics with p− = q−. There is a constant δ = δ(M) ≥
0 such that for any geodesic r with endpoints r− = p+ and r+ = q+, the geodesic
triangle with sides p, q, and r is δ-thin.

Definition 2.4 (Local Morse quasigeodesic). We say that a path is an (L;M ;λ, c)-
local Morse quasigeodesic if it is L-locally an M -Morse (λ, c)-quasigeodesic.

Definition 2.5 (MLTG property). We say that a metric space X satisfies the
Morse local-to-global property, for short MLTG property, if for any choice of Morse
gauge M and constants λ ≥ 1, c ≥ 0 there exist a scale L > 0, a Morse gauge M ′

and constants λ′ ≥ 1, c′ ≥ 0 such that every (L;M ;λ, c)-local Morse quasigeodesic
is a (M ′;λ′, c′)-Morse quasigeodesic.

The strength of the MLTG property is that it allows us to draw global conclusions
from local conditions, as the next lemma shows.

Lemma 2.6. Let p = p1∗· · ·∗pn be a concatenation of M -Morse geodesics in space
X with the MLTG property and let ai and ai+1 be the ordered endpoints of pi. For
each ε > 0 there are constants B ≥ 0, λ ≥ 1, c ≥ 0, and a gauge N (all depending
only on M and ε) such that if we have ℓ(pi) > B for all i = 2, . . . , n − 1 and
⟨(ai−1), (ai+1)⟩ai

≤ ε for all i = 2, . . . , n, then p is a (N ;λ, c)-Morse quasigeodesic.

Proof. We will show that there exists M ′ depending only on M and ε such that p
is locally a (M ′; 1, 2ϵ)-Morse quasigeodesic, and then we will choose an appropriate
B to use the MLTG property. Given the existence of such M ′, the MLTG prop-
erty gives us a Morse gauge N and constants λ ≥ 1, c ≥ 0, L ≥ 0 such that any
(L;M ′; 1, 2ε)-local Morse quasigeodesic is also a (N ;λ, c)-Morse quasigeodesic.

We start with the quasigeodesic claim. Take B ≥ L + ε and observe that if we
consider two points x, y at parameterised distance at most L, they either lie on the
same segment pi (which is geodesic), or on two consecutive segments pi−1 and pi.
In the latter case, we have

⟨x, y⟩ai
≤ ⟨ai−1, ai+1⟩ai

≤ ε

which means

d(x, y) + 2ϵ ≥ d(ai, x) + d(ai, y) = ℓ(pi−1|[x,ai] ∗ pi|[ai,y]).

Thus, p is an (L; 1, 2ϵ)-local quasigeodesic. A similar computation to that above
(with x = ai−1, y = ai+1) shows that

d(ai−1, ai+1) ≥ 2B − 2ε > L

where the last inequality comes from the choice of B. Now, applying [RST22,
Lemma 2.15] to each concatenation pi∗pi+1, we obtain some M ′ (depending only on
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M and ε) such that p is an (L;M ′; 1, 2ϵ)-local Morse quasigeodesic. Now applying
the MLTG property shows that p is (N ;λ, c)-Morse quasigeodesic. □

The property of stability generalises the notion of having the Morse property
from quasigeodesics to arbitrary subgroups.

Definition 2.7 (Stable subgroup). Let G be a group with finite generating set S,
and let M be a Morse gauge and µ ≥ 0 a constant. A subgroup H ⩽ G is called
(M,µ)-stable if any geodesic in Cay(G,S) with endpoints in H is M -Morse and lies
in the µ-neighbourhood of H. A subgroup is called stable if it is (M,µ)-stable for
some Morse gauge M and µ ≥ 0.

An immediate consequence of the definition is that a stable subgroup of a finitely
generated group is undistorted. We note that while the gauge M and constant µ
in the above depend on the choice of generating set S, the property of being stable
does not (see, for example, [DT15, Lemma 3.4]). We recall some basic properties
of stability, which follow from [DT15].

Lemma 2.8. Let G be a group with finite generating set S and suppose H ⩽ G is
(M,µ)-stable. Then the following are true:

(1) if K ⩽f H, then K is (M,µ′)-stable for some µ′ ≥ 0;
(2) if g ∈ G, then gHg−1 is stable;
(3) H is finitely generated and undistorted in G;
(4) H is hyperbolic.

The following lemma tells us that stable subgroups cannot be “too parallel” away
from their intersection. More precisely, that there is a uniform upper bound on the
Gromov product of elements from one subgroup when taken with minimal length
coset representatives of the other.

Lemma 2.9. Let G be a group with finite generating set S, and suppose that H
and K are (M,µ)-stable subgroups of G. There is a constant ρ = ρ(M,µ, S) ≥ 0
such that if h ∈ H is a shortest (with respect to S) representative of its right coset
(H ∩K)h, then for any k ∈ K, we have ⟨h, k⟩1 ≤ ρ.

Proof. Suppose for a contradiction that we can find elements h ∈ H, k ∈ K such
that h is a shortest coset representative of h(H ∩K) and ⟨h, k⟩1 is arbitrarily large.
Since H and K are stable, any choice of geodesics p = [1, h] and q = [1, k] are
M -Morse and lie in a µ-neighbourhood of H and K respectively.

Let a1, . . . , an be the vertices of p with dS(1, ai) ≤ ⟨h, k⟩1. The assumption
that ⟨h, k⟩1 can be taken to be arbitrarily large means that n can be taken to
be arbitrarily large. Corresponding to each vertex ai, there is vi ∈ H such that
dS(ai, vi) ≤ µ by stability of H. Moreover, by Lemma 2.3 there is δ = δ(M) ≥ 0
such that dS(ai, q) ≤ δ for each i = 1, . . . , n. By stability of K and the triangle
inequality, therefore, we obtain that dS(vi,K) ≤ 2µ+ δ for each i = 1, . . . , n. Note
that since p is geodesic

(1) dS(1, vi) ≤ i− µ and dS(vi, h) ≤ dS(1, h)− i− µ

for each i = 1, . . . , n.
For each i = 1, . . . , n, let gi be the shortest element of G with respect to S such

that vigi ∈ K, so |gi|S ≤ 2µ + δ. Let N be the number of elements in the ball
of radius 2µ+ δ about the identity in Cay(G,S). Taking n to be sufficiently large
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with respect to N and µ, there must be some pair (i, j) with gi = gj satisfying
j − i > 2µ. Then equation (1) gives

(2) dS(1, vi) + dS(vj , h) < dS(1, h).

But then vjgj(vigi)
−1 = vjv

−1
i ∈ H∩K, as vi, vj ∈ H and vigi, vjgj ∈ K. Moreover

dS(vjv
−1
i , h) ≤ dS(vjv

−1
i , vj) + dS(vj , h)

= dS(1, vi) + dS(vj , h) < dS(1, h)

where the last inequality is an application of (2). It follows that viv
−1
j h ∈ (H∩K)h

and ∣∣viv−1
j h

∣∣
S
= dS(vjv

−1
i , h) < dS(h, 1) = |h|S

which contradicts the fact that h is a minimal length representative of its (H∩K)-
coset. Thus, there must be an upper bound on the Gromov product. □

We finish this section by recalling the key property that we need for our proof,
namely that the MLTG property allows a ping-pong type argument for stable sub-
groups.

Proposition 2.10 ([RST22, Theorem 3.1]). Let G be a group with finite generating
set S and suppose G has the Morse local-to-global property. Let Q,R ⩽ G be
(M,µ)-stable subgroups of G. There is a constant C = C(M,µ, S) ≥ 0 such that
the following is true.

Let Q′ ⩽ Q and R′ ⩽ R be subgroups such that Q′ ∩ R′ = Q ∩ R and |g|S ≥ C
for each g ∈ (Q′ ∪ R′) \ (Q′ ∩ R′). Then ⟨Q′, R′⟩ ∼= Q′ ∗Q′∩R′ R′. Moreover, if Q′

and R′ are finitely generated and undistorted in G, then ⟨Q′, R′⟩ is stable.

3. Separability of products

In this section we will prove the main theorem. We start with some elementary
observations about separable subsets.

Remark 3.1. If U ⊆ G is a separable subset of G, then U−1, gU , and Ug are
separable for any g ∈ G.

Remark 3.2. Let H1, . . . ,Hn ⩽ G be subgroups of G and let a0, . . . , an ∈ G.
Observe that

a0H1a1 . . . an−1Hnan = Ha0
1 Ha0a1

2 . . . Ha0...an−1
n a0 . . . an,

which is a translate of a product of conjugates of the subgroups H1, . . . ,Hn. The
set a0H1a1 . . . an−1Hnan is thus separable if and only if the product of subgroups
Ha0

1 . . . H
a0...an−1
n is separable.

In particular, suppose there is n ∈ N such that any product of n stable sub-
groups are separable in G, and suppose H1, . . . ,Hn are stable subgroups of G.
Lemma 2.8(2) gives that H

a0...ai−1

i is stable for each 1 ≤ i ≤ n, so that the set
Ha0

1 . . . H
a0...an−1
n is a product of n stable subgroups. By the observation above we

may conclude that the set a0H1a1 . . . an−1Hnan is separable in this situation.

In order to exploit the geometric properties afforded by the MLTG property, it
is useful to choose coset representative that are geometrically meaningful, which we
can do by the following remark.
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Remark 3.3. Suppose that S is a generating set for group G and let H1, . . . ,Hn ⩽
G be subgroups of G. Given elements x1 ∈ H1, . . . , xn ∈ Hn, there are elements
y1 ∈ H1, . . . , yn ∈ Hn such that x1 . . . xn = y1 . . . yn and |yi|S is minimal among
elements of the coset (Hi−1 ∩Hi)yi for each 1 < i ≤ n.

Indeed, there is yn ∈ Hn and zn ∈ Hn ∩ Hn−1 such that xn = znyn and |yn|S
is minimal among elements of (Hn−1 ∩ Hn)xn = (Hn−1 ∩ Hn)yn. Similarly there
is yn−1 ∈ Hn1 and zn−1 ∈ Hn−1 ∩ Hn−2 such that xn−1zn = zn−1yn−1 and yn−1

is a shortest representative of (Hn−2 ∩ Hn−1)xn−1zn = (Hn−2 ∩ Hn−1)yn−1. We
can proceed by finite induction to find elements y2 ∈ H2, . . . , yn ∈ Hn and z2 ∈
H2 ∩ H3, . . . , zn ∈ Hn−1 ∩ Hn with the properties described above. Setting y1 =
x1z2 ∈ H1 completes the observation.

We conclude the section by proving the main theorem of the paper and the
related corollaries.

Proof of Theorem 1.1. We proceed by induction on the number n of stable sub-
groups. The case n = 1 is exactly the hypothesis that stable subgroups of G are
separable, so let H1, . . . ,Hn be stable subgroups of G with n > 1 and suppose that
the product of any n− 1 stable subgroups of G is separable.

Fix a finite generating set S of G. By taking maxima of gauges and constants,
we may assume without loss of generality that H1, . . . ,Hn are (M,µ)-stable. Let
ρ = ρ(M,µ, S) be the constant obtained from Lemma 2.9, and let C = C(M,µ, S)
be the constant of Proposition 2.10. Let B, λ, c ≥ 0 be the constants and N the
Morse gauge obtained from applying Lemma 2.6 with gauge M and constant ρ.

Suppose for a contradiction that the product H1 . . . Hn is not separable, so that
there is some g /∈ H1 . . . Hn belonging to the profinite closure of H1 . . . Hn. This
means that g is contained in every separable subset containingH1 . . . Hn. For ease of
reading, we will write Q = H1, R = H2, and Ti = Hi+2 whenever 1 ≤ i ≤ s = n−2.
By hypothesis Q and R are separable, and thus their intersection I = Q∩R is also.
Let {Ni}i∈N be an enumeration of the finite index subgroups of G containing I,
and note that I =

⋂
i∈N Ni as I is separable. For each i, we write

N ′
i =

i⋂
j=1

Nj

so that {N ′
i}i∈N is a sequence of nested finite index subgroups of G containing I

whose intersection is equal to I.
For each i ∈ N, we define the set

Ki = Q⟨Q′
i, R

′
i⟩RT1 . . . Ts

where Q′
i = N ′

i ∩Q ⩽f Q and R′
i = N ′

i ∩R ⩽f R. Note that I ⊆ N ′
i for each i ∈ N,

so that Q′
i ∩R′

i = I. It is immediate from the definition that Ki ⊇ QRT1 . . . Ts for
each i ∈ N. Our aim is to show that for sufficiently large i, the set Ki is separable
and excludes the element g.

Let us first show that Ki is separable when i is large. Indeed, for a given i,
let x1, . . . , xa be left coset representatives for Q′

i in Q and y1, . . . , yb be right coset
representatives for R′

i in R. Then we have

Ki =

a⋃
j=1

b⋃
k=1

xj⟨Q′
i, R

′
i⟩ykT1 . . . Ts.
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Since I is the intersection of all N ′
i , there is an index i0 ∈ N such that for any i ≥ i0,

any element n ∈ N ′
i with |n|S ≤ C belongs to I. By (1) and (3) of Lemma 2.8, Q′

i

and R′
i are finitely generated and undistorted, so we may apply Proposition 2.10 to

obtain that ⟨Q′
i, R

′
i⟩ is stable. Thus, by Remark 3.2 and the induction hypothesis,

Ki can be written as a finite union of separable subsets, and so Ki is separable
whenever i ≥ i0.

We now show that there is i ∈ N such that g /∈ Ki. As g belongs to the profinite
closure of QRT1 . . . Ts and for each i ≥ i0 the set Ki is a profinitely closed subset of
G containing QRT1 . . . Ts, g belongs to Ki for each i ≥ i0. That is, for each i ≥ i0
we may write

(3) g = q(i)x
(i)
1 . . . x(i)

mi
r(i)t

(i)
1 . . . t(i)s

for some mi ∈ N and x
(i)
j ∈ Q′

i ∪R′
i for each 1 ≤ j ≤ mi, and where q(i) ∈ Q, r(i) ∈

R, t
(i)
1 ∈ T1, . . . , t

(i)
s ∈ Ts.

The remainder of the argument may be split into two essentially different cases
based on the lengths of the elements obtained above: we summarise them here.

In one case, the lengths of infinitely many of the elements r(i), t
(i)
1 , . . . , t

(i)
s−1 re-

main bounded as i tends to infinity. When this happens, we may pass to a sub-
sequence where one these terms is constant in i. This reduces the number of
subgroups we have to consider in the product and we may apply the induction
hypothesis to obtain our contradiction. The other situation to consider is when
the lengths of these elements increase without bound. In this case, for sufficiently
large values of i the products as in (3) define paths that are (arbitrarily long) lo-
cal Morse quasigeodesics. The MLTG property then shows that these are actually
Morse quasigeodesics, resulting in another contradiction.

Case 1: lim infi→∞
∣∣r(i)∣∣

S
< ∞ or lim infi→∞

∣∣∣t(i)j

∣∣∣
S
< ∞ for some 1 ≤ j < s.

We consider only the possibility that lim infi→∞
∣∣r(i)∣∣

S
< ∞, for the other cases

can be dealt with identically. It follows from this assumption that there is a subse-
quence of (r(i))i∈N whose terms have length bounded by some fixed constant. Since
there are only finitely many elements of G with any given length with respect to S,
we may pass to a further subsequence whose terms are all equal to a single element
r ∈ R. Hence we have

(4) g ∈ Q⟨Q′
i, R

′
i⟩rT1 . . . Ts for infinitely many i ∈ N.

Now by the induction hypothesis and Remark 3.2, the set QrT1 . . . Ts is separable
in G. Since g /∈ QRT1 . . . Ts, we have g /∈ QrT1 . . . Ts, and so there is N ◁f G such
that g /∈ NQrT1 . . . Ts = QNrT1 . . . Ts. The subgroup IN ⩽f G is a finite index
subgroup of G containing I, so N ′

i1
⊆ IN for some i1 ∈ N. Since the sequence of

subgroups {N ′
i}i∈N is nested, we have thus shown that

Q⟨Q′
i, R

′
i⟩rT1 . . . Ts ⊆ QN ′

irT1 . . . Ts ⊆ QINrT1 . . . Ts = QNrT1 . . . Ts

for any i ≥ i1, where the last equality uses the fact that QI = Q. However, the
fact that g /∈ QNrT1 . . . Ts now contradicts the inclusions of (4), so this case is
impossible.

Case 2: lim infi→∞
∣∣r(i)∣∣

S
= ∞ and lim infi→∞

∣∣∣t(i)j

∣∣∣
S
= ∞ for all 1 ≤ j < s.
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Define z0 = 1, z1 = q(i), z2 = z1x
(i)
1 , . . . , zmi+1 = zmi

x
(i)
mi , zmi+2 = zmi+1r

(i),

and zmi+3 = zmi+2t
(i)
1 , . . . , zmi+2+s = zmi+st

(i)
s . For each 0 ≤ j ≤ mi + 1 + s, we

let pj be a geodesic with (pj)− = zj and (pj)+ = zj+1. Let p be the concatenation
p0 ∗ · · · ∗ pmi+1+s of these paths.

We will use Lemma 2.6 to conclude that the path p is a uniform quasigeodesic.

Assuming this, the fact that lim infi→∞
∣∣r(i)∣∣

S
= ∞ and lim infi→∞

∣∣∣t(i)j

∣∣∣
S

= ∞
means that for sufficiently large i, the distance between the endpoints of p is greater
than |g|S , contradicting the fact that p represents g.

Without loss of generality, we may assume x
(i)
1 ∈ R′

i \ Q and x
(i)
mi ∈ Q′

i \ R, for

otherwise we may replace q(i) with q
(i)
1 = q(i)x

(i)
1 ∈ Q and eliminate x

(i)
1 from the

product (and likewise with r(i) and x
(i)
mi). Further, we may assume by Remark 3.3

that x
(i)
1 , . . . , x

(i)
mi , and r(i) are shortest representatives of their right I-cosets, and in

particular x
(i)
1 , . . . , x

(i)
mi , r

(i) /∈ I. Similarly we take t
(i)
1 to be a shortest representa-

tive of (R∩T1)t
(i)
1 and, for 1 < i ≤ s, the element t

(i)
j to be a shortest representative

of (Tj−1 ∩ Tj)t
(i)
j .

The above paragraph together with Lemma 2.9 shows that

(5) ⟨zj−1, zj+1⟩zj ≤ ρ for j = 1, . . . ,mi + s.

We now verify the hypotheses of Lemma 2.6. Each of the geodesic segments
pi represents an element of a finite index subgroup of one of Q,R, T1, . . . , Ts−1,
or Ts, Therefore by Lemma 2.8(1), we obtain that the geodesic segments pi are
M -Morse. For any given B′ ≥ B (recall that B is the constant of Lemma 2.6
applied with M and ρ) we deduce the following. Since lim infi→∞

∣∣r(i)∣∣
S

= ∞
and lim infi→∞

∣∣∣t(i)j

∣∣∣
S

= ∞ we have that
∣∣r(i)∣∣

S
> B′ and

∣∣∣t(i)j

∣∣∣
S

> B′ for each

j = 1, . . . , s and sufficiently large i. Moreover, since x
(i)
j ∈ (Q′

i ∪R′
i) \ I ⊆ N ′

i \ I
and since

⋂
N ′

i = I, for i large enough we have
∣∣∣x(i)

j

∣∣∣
S
> B′. Thus Lemma 2.6

implies that p is (N ;λ, c)-Morse quasigeodesic. Finally, choosing B′ sufficiently
large with respect to λ, c, and |g|S , gives us that the endpoints of p are a greater
distance than |g|S apart, the desired contradiction.

From the above, there is some i ∈ N such that Ki is separable, contains the prod-
uct QRT1 . . . Ts, and excludes g. Therefore the product QRT1 . . . Ts = H1 . . . Hn is
separable. □

Proof of Corollary 1.3. Stable subgroups are quasiconvex, and quasiconvex sub-
groups of virtually special groups are separable by [HW08, Corollary 7.9]. More-
over, CAT(0) groups have the MLTG property by [RST22, Theorem D]. Therefore
Theorem 1.1 applies to give the result. □

Proof of Corollary 1.4. Let H1, . . . ,Hn be strongly quasiconvex subgroups of AΓ.
If there is some 1 ≤ i ≤ n such that Hi has finite index, then the product H1 . . . Hn

is a union of finitely many cosets of Hi. Since Hi has finite index, it is separable in
AΓ, whence H1 . . . Hn is separable.

Now suppose that each of the subgroups H1, . . . ,Hn has infinite index in AΓ. By
[RST23, Corollary 7.4], they must be stable subgroups. Noting that AΓ is CAT(0)
and hence has the MLTG property [RST22, Theorem D], the conclusion follows by
applying Theorem 1.1. □
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