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1 Free constructions

There are some natural constructions in the category of groups that allow one to build
larger groups out of smaller ones. Of course, among these are things like direct prod-
ucts (which is the categorical product) and, more generally, group extensions. We are
interested here in the more free constructions of this variety. The most basic of these
operations is the free product.

Definition 1.1 (Free product). Let G and H be groups. The free product G x H of G
and H is the coproduct of G and H. That is, for any group K and any homomorphisms
p: G — K,v: H— K, there is a unique homomorphism f: G «* H — K such that the
following commute:

Similarly to free groups, it is clean to define a free product in terms of a universal
property, but it is often useful to have a model to work with (and to show that a coproduct
actually exists!). We say a word in G U H is reduced if it contains no consecutive pairs of
the form gg’ with g,¢’ € G or hh' with h,h' € H. That is, it strictly alternates between
letters in G and letters in H. There is an obvious reduction relation, and we can verify
that the group of equivalence classes of reduced words in G U H (with the operation of
concatenation of representatives) is in fact the free product G x H.

Exercise 1.2. Show that if G = (S| Q) and H = (T'| R) are presentations, then G * H
has the presentation (SUT|Q U R).

It can be useful to consider these free constructions in the context of topological
spaces. The Seifert—van Kampen tells us that the fundamental group of the wedge of
two locally contractible spaces is a free product of the fundamental groups of the two
spaces. Of course, the wedge and the free product are both categorical coproducts (in
the category of pointed topological spaces and groups respectively), and the 7; map



is functorial. More generally, this theorem tells us that if we glue two spaces together
along some open path-connected subspace, the fundamental group is a pushout of the
corresponding fundamental groups. This brings us to the more general form of the free
product.

Definition 1.3 (Amalgamated free product). Let G, H, and K be groups, and suppose
that ¢: K — G,v: K — H are injective homomorphisms. The free product of G and H
amalgamated over K is the pushout of ¢ and . Namely, it is the group G *x H such that
for any group homomorphisms G — L and H — L, there is a unique homomorphism
G xx H — L such that the following diagram commutes:
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In a slight abuse of notation, we usually suppress mention of the homomorphisms ¢
and v entirely, and treat K as a common subgroup of both G and H. Again, amalgamated
free products have an obvious presentation.

Exercise 1.4. In the notation of the above definition, show that G xx H has the pre-
sentation of G x H with the added relations that ¢(k) = ¢(k) for each k € K.

Show that if G and H are finitely presented and K is finitely generated, then G xx H
is finitely presented.

Like in a free product, elements in amalgamated free products can also be written
in a unique minimal way as reduced words in G and H, though their description is a
little more involved. We call such expressions normal forms for elements. That such a
normal form exists once one fixes a transversal of the amalgamating subgroup in each of
the factors is a consequence of the following theorem. Note that in a free product, the
amalgamating subgroup is trivial, so that the transversals comprise the entirety of each
factors, and hence every reduced word is already a normal form.

Theorem 1.5. Let G and H be groups, K < G, H a common subgroup. Let ai,...,a, €
G xx H that alternate between images of either G or H. If ay...a, =1, then either
1.n=1anda; =1;
2. n>1 and there ist =1,...,n such that a; is in the image of K.

The other main free construction of importance to infinite groups is known as the
HNN extension, named after its inventors Graham Higman and Bernard and Hannah
Neumann. It is a little harder to describe this construction with a universal property (it
is a homotopy colimit), so we give the traditional presentation-based definition.



Definition 1.6 (HNN extension). Let G be a group, H < G be a subgroup, and
¢: H — G an injective homomorphism. The HNN extension G*, is the group with
the presentation

(G, t|tht™! = p(h) for all h € H).
We call the subgroups H and ¢(H) the associated subgroups of the HNN extension, G
the base of the extension, and ¢ is called the stable letter.

Of course, an HNN extension is in general not an actual group extension. Again
in analogy with spaces, HNN extensions correspond to fundamental groups of partial
mapping tori — spaces one obtains by gluing pieces of another space to itself, along a
cylinder say. This goes some way to explaining why there is no simple universal property
for this construction, since there is no interval object in the category of groups. There
are also normal forms for elements in an HNN extension, similarly to amalgamated free
products. This is a consequence of the following.

Theorem 1.7 (Britton’s lemma). Let G*, be an HNN extension of a group G with
associated subgroups H and p(H), with stable lettert. Let gg,...,gn € G and ey, ... e, =
+1. Suppose that got®rg1t°2 ... t°*g, = 1. Then either
1. n=0and go =1;
2. n>0 and for some 1 <i<n-—1, we have ¢; = —e;11 and either g; € H, if ¢; = 1,
or otherwise g; € p(H), if e; = —1.

Example 1.8. Let G be a group, and ¢: G — G an automorphism. Then the HNN
extension G*, with associated subgroups G and ¢(G) = G is exactly the semi-direct
product G X, Z, where Z is the infinite cyclic subgroup generated by the stable letter.

Example 1.9. The Baumslag-Solitar group BS(m,n) is an HNN extension Zx,, where
0 is an isomorphism of the subgroups mZ and nZ of Z.

It is a straightforward consequence of Britton’s lemma that the natural inclusion of
the base group into an HNN extension is an embedding. As such, HNN extensions are
a particularly useful tool for building embeddings of groups. For instance, they play a
significant role in the proof of Higman’s theorem, which states that a finitely generated
group is recursively presented if and only if it embeds into a finitely presented group. We
give an simpler example of such an application.

Theorem 1.10. FEvery countable group embeds in a group generated by two elements.

Proof. Let C' = {c, |n > 0} be a countable group, and let F' = C * (a,b) be the free
product of C' with the free group on a and b. For simplicity, we assume that ¢y = 1 is the
identity in C. Now the set {b’ab=*|i > 0} freely generates an infinite rank free group H
in (a,b), and similarly {c;a’ba=*|i > 0} also freely generates an infinite rank free group
K in C. Take G = Fx, to be an HNN extension of F', where ¢: H — K is such that
@(b'ab~") = c;a’ba~" for each i > 0. Of course, C is embedded in F, which is in turn
embedded in G, so C embeds in G. Moreover, G has the presentation

G = (F,t|tat™! = b, tbiab 't ™1 = sa’ba™",i > 1),

from which it can be seen that a and t form a generating set. O



The above allows one to equip any countable group with a proper metric, as a subspace
of a 2-generated group it embeds in with respect to its word metric. It should not be
immediately obvious that this is possible, but that it is allows one to study the coarse
geometry of countable groups.

Exercise 1.11. Use Britton’s lemma to show that every finite order element of an HNN
extension G, is conjugate into G.

2 Decompositions of groups

We will see that the free constructions above play a crucial role in understanding the
algebraic structure of infinite groups. First, we will need a definition.

Definition 2.1 (Ends of a space). Let X be a topological space, and K1 C Ko C ... a
sequence of nested compact subsets, the union of whose interiors covers X. An end of
X is a nested sequence Uy D Us D ..., with each U; a connected component of X — Kj.

If G is group with finite generating set S, then e(G) is the number of ends of the
space I'(G, S).

The ends of space are straightforwardly seen to be independent of the choice of
exhaustion (K;). As a consequence, the space of ends is a quasi-isometry invariant
among proper metric spaces. It follows also that the ends of a group do not depend on
the choice of generating set. For a hyperbolic group G, the ends are exactly the connected
components of the boundary dG. The following may be reminiscent of a similar fact we
saw for the cardinalities of convergence groups.

Exercise 2.2. Show that a finitely generated group has 0, 1,2, or infinitely many ends.

Ends of groups were introduced independently by Freudenthal and Hopf. It is obvious
that the finitely generated groups with zero ends are exactly the finite groups, as the Cay-
ley graph of every finitely generated infinite group contains is unbounded. Freudenthal
and Hopf both also obtained the following characterisation of the two-ended groups.

Theorem 2.3. Let G be a group with two ends. Then G contains an infinite cyclic group
of finite index.

The above admits a great variety of different proofs. While most are not especially
difficult or long, they are also not particularly easy or short, so we omit the proof here.
In the 60s, Stallings obtained the following striking result, which can be interpreted as
one of the first major theorems in geometric group theory.

Theorem 2.4 (Stallings). A finitely generated group G has more than one end if and
only if G is an amalgamated free product G = H xx H' where K # H,H' is a finite
subgroup, or an HNN extension G = Hx, with finite associated subgroups.
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