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1 Geometric group actions

Definition 1.1 (Quasi-geodesics). Let A > 1 and ¢ > 0. A (A, ¢)-quasi-geodesic in X is
a (A, ¢)-quasi-isometric embedding of a closed interval I C R into X. The endpoints of a
quasi-geodesic are the images of the endpoints of the interval, if the interval is bounded.

We call a (1,0)-quasi-geodesic a geodesic. A space X is called a geodesic space if
every pair of points can be joined by a geodesic. Given two points z,y € X we will often
denote by [x,y] a choice of geodesic whose endpoints are x and y.

Remark 1.2. A (), 0)-quasi-geodesic is necessarily continuous. In particular, geodesics
are continuous.

Example 1.3. The plane R? is a geodesic space, but R — {0} is not.

Quasi-geodesics need not be continuous in general. The following lemma allows us
to restrict our attention to continuous quasi-geodesics in many scenarios, without losing
very much. We only sketch a very rough idea here and leave the details to the reader,
though those less interested in this rather dull technical exercise may also find a proof
in Bridson—Haefliger, Lemma III.H.1.11.

Lemma 1.4. Let X be a geodesic space, A > 1, and ¢ > 0. There is a constant ¢ =
(X, ¢) > 0 such that the following is true.

Let v: I — X be a (A, c)-quasi-geodesic in X. Then there is a continuous (\,c’)-
quasi-geodesic v': J — X with the same endpoints as vy, such that the images of v and
~" are a Hausdorff distance of at most ¢ from one another.

Proof. Partition I along its integer points, and construct 7’ by concatenating geodesics
joining the images of this partition in X. As + is (A, ¢)-quasi-geodesic, the length of each
of these segments is at most A + ¢, so the second claim holds as long as we choose ¢/
greater than this. For the first and last claims, we can use the quasi-geodesicity of v and
compare the paths by their images of the integer partition. O

Recall that the Heine—Borel theorem tells us that closed and bounded subsets of
finite dimensional Euclidean spaces are compact. Many other spaces we will consider



have this important property, such as locally finite graphs. We view this as a sort of
finiteness property; non-proper spaces include things such as Banach spaces of infinite
dimension and graphs with infinite valence at a vertex. We will give a name to metric
spaces satisfying this property more generally.

Definition 1.5 (Proper space). A metric space X is called proper if each of its closed
and bounded sets are compact.

Exercise 1.6. Let X be a proper metric space, and suppose G < Isom(X) is a subgroup
of isometries. Show that the action of G on X is properly discontinuous if and only if G
is a discrete subgroup of Isom(X), equipped with the compact-open topology.

Exercise 1.7. A length space is a metric space where any two points can be joined by a
rectifiable paths, and the distance between two points coincides with the infimum of the
lengths of all such paths. Prove the Hopf-Rinow theorem: every complete and locally
compact length space is proper and geodesic.

Perhaps the most important observation we will make is the following, which is some-
times referred to as the fundamental lemma of geometric group theory.

Proposition 1.8 (Milnor-Schwarz Lemma). Let X be a proper geodesic metric space,
and suppose that G acts on X cocompactly by isometries. Then there is a generating set
S of G such that the orbit map

G—X,g—9g- -z

s a quasi-isometry for any x € X. Moreover, if the action is properly discontinuous,
then S is finite.

Proof. Let x € X be an arbitrary point. As X is proper, it is locally compact. Therefore
cocompactness of the action is equivalent to the existence of compact B C X withz € B
such that G- B = X. As B is compact, it is a bounded set: let R be the diameter of B
and define

S={seG|dx(z,s-x) <3R} — {1},

We first show that S is a generating set for G. Let g € G be an element and write
d=dx(xz,g-z). As X is a geodesic space, there is a geodesic v: [0,d] — X between x
and g-x. We may choose a partition 0 = tg < --- < t,, = d of [0, d] such that t;—t,_1 = R
foreachi=1,...,n—1and ¢, —t,—1 < R. It follows that

1
ngﬁdx(x,g-x)—i-l. (1.1)

As G- B = X, there is g; € G such that ~(¢;) € g; B for each ¢ = 0,...,n. We may take
go=1and g, =g.
For each ¢ =1,...,n,, we have

dx(gi-1-2,9i-w) <dx(gi—1 -2, v(ti—1)) + dx(v(tiz1),y(t:)) +dx (v(t:), i - )
<R+R+R=3R



so that dx (z, gi__llgi'x) < 3R. It follows by definition that gi__llgi € Sforeachi=1,...,n.
By a finite induction it follows that g = g, € (S). As g was arbitrary, S generates G.
At this point we remark that since X is proper, then the ball of radius 3R about z
is compact. Hence, if the action of G is properly discontinuous, then the set S is finite.
We now show that the map in the statement is a quasi-isometry. Since the map is
G-equivariant, we need only bound dx (z, ¢ -x) from above and below by linear functions
of dg(1,g). From the above, g can be written as a word of length n in S, namely

9=01(9792)(95"93) - - - (95, 09n—1)(95 2 1n)-

Hence dg(1,9) < n. By (1.1), this implies dg(1,g) < %dx(x,g -x) + 1. Moreover, if
w = S1...8, is a word of minimal length representing g. Then

dx(z,9-z) <dx(z,s12) +---+dx(s1...50-1 2,9 )

< Zd(l’, 84 li)
i=1
< 3Rn = 3Rdg(1, g)

where the first inequality holds by the triangle inequality, the second by the fact G acts
by isometries, and the third by the definition of S. O

Recall that two groups are commensurate if they contain isomorphic subgroups of
finite index. We have a basic consequence of the Milnor-Schwarz lemma

Lemma 1.9. Finitely generated commensurate groups are quasi-isometric.

Proof. It is enough to show that a group is quasi-isometric to any of its finite index
subgroups. Let H <y G and let S be a finite generating set for G. As G acts properly
discontinuously by isometries on I'(G, S), so does H. Moreover, every point of I'(G, S) is
at most [G : H| from H, so the action is cocompact. Hence by the Milnor-Schwarz lemma,
H has a finite generating set T for which I'(H, T') is quasi-isometric to I'(G, S). O]

Remark 1.10. Albert Schwarz, whose name appears as the second component of above
named result, is a Russian-born mathematician who, after beginning in topology, spent a
majority of his career working on mathematical physics. The name Schwarz is a German-
Jewish name, and was transliterated to Russian as IlIpapi. Many sources still cite this
result as the ‘Svarc-Milnor’ or ‘Milnor-Svarc’ lemma, owing to a curious decision by the
AMS in the 1950s to re-transliterate IITsapry as Svarc. Amusingly, Schwarz later moved
to the United States, where he goes by the original spelling of his family name.

Remark 1.11. The main initial motivation for considering quasi-isometries comes from
differential geometry; they fundamentally clarify the relationship between continuous
structures and certain discrete objects approximating them. In particular, Schwarz and
Milnor were interested in relating volume growth in universal covers of Riemannian man-
ifolds to some notion of growth in their fundamental groups. That these rates are the
same for compact manifolds, up to a suitable equivalence relation, is a straightforward
consequence of the Milnor—Schwarz lemma.



We conclude this section with the statement of a major theorem of Gromov. The
proof is well beyond the scope of this course, but it is a strong indicator that one can
recover a remarkable amount of algebraic information from asymptotic geometric data.
We will not give a precise definition here, but the growth rate of a finitely group is the
rate of growth of the function r — |B(1,7)|, where the ball is taken the group with
respect to some word metric for a finite generating set. It is not difficult to see that this
is a quasi-isometry invariant.

Theorem 1.12. Let G be a finitely generated group. Then G has a finite index nilpotent
subgroup if and only if it has polynomial growth.

2 Negative curvature in spaces

There are many notions of curvature in spaces. To do geometric group theory, we are
interested in formulating a notion that applies to metric spaces in general. This approach
is informed by more classical notions of negative curvature in manifolds. Given a Rie-
mannian manifold, the curvature may be formalised using sectional curvature: given two
linearly independent vectors in a tangent space to a point, one calculates the Gaussian
curvature of the surface with tangent plane equal to the span of these vectors.

Already, the topology of complete manifolds with everywhere non-positive sectional
curvature is tied to group theory — the Cartan—-Hadamard theorem tells us that the
universal cover of such a manifold of dimension n is homeomorphic to R". It follows
that these manifolds are aspherical, and so their algebraic topology is largely determined
by their fundamental groups. The most basic examples of manifolds of non-positive
curvature are those with constant negative curvature: these are hyperbolic manifolds.
The study of hyperbolic manifolds is incredibly vast and incredibly rich; we here give a
brief overview of the basics in low dimensions, to give some intuition and motivation for
the more abstract, metric, and combinatorial notions that will be the focus of most of
this course.

2.1 Hyperbolic geometry

History. Hyperbolic geometry is the geometry of space with a constant negative
curvature, and can be thought about in contrast to the geometry of space with zero
curvature (i.e. Euclidean geometry) and constant positive curvature (i.e. spherical ge-
ometry). The development of hyperbolic geometry has a storied history, and was born
out of an almost two-millennia-long attempt to reconcile a difficult tension in Euclid’s
classical axiomatisation of geometry.

The core point of contention was the nature of Euclid’s fifth axiom, called the ‘parallel
postulate’. Contrary to the other four axioms (e.g. there exists a straight line between any
two points, all right angles are equal), the parallel postulate is much more complicated,
stating ‘if two lines meet a third line, then the two lines will meet on the side of the third
line for which the angle sum is less than the sum of two right angles’.



Coupled with the fact that more than half of the propositions in the first book of the
Elements do not invoke the parallel postulate, it was widely believed that it should follow
from the other axioms. Out of many attempts to prove this, it was gradually realised
that the rejection of this axiom actually entails a consistent and robust geometry, often
called ‘absolute geometry’, and that the truth of the parallel postulate in a particular
model of geometry is independent of the other axioms. There are in fact only two models
of absolute geometry, and they are exactly Euclidean and hyperbolic geometry, with the
latter obtained by taking a negation of the parallel postulate instead of the postulate
itself.

The Poincaré ball. We will write H" for hyperbolic space of dimension n. This is,
the unique simply connected Riemannian manifold of constant negative curvature —1.
As a model for this space, we will take the open unit ball in Euclidean space R™, equipped
with the metric

4| dx|?

(1 —[x]1)*"

This model is called the Poincaré ball model for hyperbolic space. There is no isometric
embedding of H" into Euclidean space of any dimension (unlike, say, a sphere with its
intrinsic metric), so any such model must be far from distance-preserving. In fact, this
model is conformal — it preserves angles — but it is easy to see that distances between
points are heavily distorted from their Euclidean counterparts. Other common models
are the hyperboloid model and the half space model; each comes with its own advantages
and drawbacks.

Hyperbolic space has a natural bordification JH", which we call the space at infinity
or simply the boundary. From the ball model, this boundary is clear to see as the
boundary sphere JH" = S"~!. The geodesics in this space are given by diametrical
lines and arcs of circles that are perpendicular to the boundary JH". The group of
isometries of H" in this model is the Lie group SO(n, 1) of special orthogonal matrices
of signature (n,1). The space H" is homogenous and isotropic — its group of isometries
acts transitively on the space, and transitively on the tangent space at any given point.

ds® =

Exercise 2.1. Verify using the path integral formula

_ [ 2@
)= [ Hth

ter 1= 17(?)
for a path v: I — H", that the geodesics in H" are as described above.

Hyperbolic geometry has some interesting features that distinguish it from Euclidean
geometry. The easiest to see of these is the non-parallelism of geodesics described in
the previous section: this can be seen by the description of geodesics as above. In fact,
geodesics will always diverge from each other rather quickly, in one direction or another.
There is also the phenomenon of ultra-parallelism, where geodesics can share one endpoint
in OH". Such geodesics will stay a bounded distance from one another as they approach
one point at infinity, and diverge in the other direction.



A second key feature of hyperbolic geometry is the uniform thinness of polyhedra. In
Euclidean geometry, due to the existence of homothety, there are triangles of arbitrarily
large area and arbitrarily large incircles. In hyperbolic geometry, this behaviour is for-
bidden. Let M be a compact Riemannian surface and recall the Gauss-Bonnet formula
from differential geometry:

// KdA+/ kgds = 2mx (M),
M oM

where K is the Gaussian curvature of M and k, is the geodesic curvature of M. With
a smoothing argument, one can apply this formula to calculate the area of triangles.
For an isometrically embedded triangle 7" in hyperbolic space, K = 1, x(7) = 1, and
contribution of the integral involving the boundary corresponds exactly to the sum of
the external angles. Hence

area(T) =7 — (a+ B+ 7),

where «, 3, and « are the internal angles of T'. The area of a hyperbolic triangle is thus
always bounded from above by 7. It follows, for instance, that there is a uniform bound
on the radius of an incircle in a hyperbolic triangle; they are all thin.

Exercise 2.2. Show explicitly that H?, and thus H", has triangles that are uniformly
thin in the above sense, with the constant %10g 3 as the bound on radii. (Hint: the worst
you could do is an ideal triangle, one whose vertices lie on the boundary circle of H?.)

Another clear consequence of the above formula is the fact that the angle sum in a
hyperbolic triangle is always less than 7, contrasting the Euclidean case, where it is equal
to w. In fact, the angle sum decreases proportionally to the area, with ideal triangles
having the largest area and angle sum of zero.
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