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1 More hyperbolic geometry

Another key difference between Euclidean and hyperbolic geometry that we highlight
here concerns balls. In Euclidean space of dimension n, a ball of radius r has volume
proportional to rn. Already, however, the area of a disc in the hyperbolic plane has
grows exponentially with respect to the radius. In fact, the same is true even of the
circumference of a circle in hyperbolic space. One may verify this by means of computing
some not-too-complicated integrals. As a result, one sees that two different (unit-speed)
geodesic rays in Hn with a shared origin ‘diverge’ exponentially quickly, in the sense that
one must travel exponentially long distances with respect to a radius to get from a point
on one to the other, outside a ball around the origin with that radius.

Surfaces and tessellations. In general, it is a fact that every hyperbolic manifold
arises as the quotient Hn/Γ of hyperbolic space by a torsion-free discrete subgroup of
isometries Γ ⩽ Isom(Hn). This is easy to see if one assumes that Hn is the unique simply
connected Riemannian manifold of constant curvature −1: each hyperbolic n-manifold
M has universal cover M̃ = Hn (after possibly rescaling the metric) on which Γ = π1(M)
acts by isometries. That Γ is torsion-free corresponds to the fact that the action of π1(M)
is free and M = Hn/Γ has no singular points. This is a little abstract, so let us restrict
our attention now to the two-dimensional case of the hyperbolic plane, where such a
realisation can be explicitly computed and visualised.

Our construction will involve understanding polygons and tessellations of the hyper-
bolic plane. We sketch a proof of the following:

Lemma 1.1. Let n,m ∈ N be natural numbers with 1
n + 1

m < 1
2 . Then there is a

tessellation of H2 by regular n-gons, with m different n-gons meeting at every vertex.

Proof. Very close to the origin in the Poincaré disc, the metric closely resembles that of
Euclidean space. That is, there are regular n-gons centred on the origin, whose interior
angle sum is arbitrarily close to 1

2(n − 1)π, the corresponding angle sum in Euclidean
space. Following the above discussion on area, moving the vertices outward from the
origin decreases this angle sum monotonically, and the sum approaches zero as the n-gon
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tends to an ideal n-gon. By a continuity argument, there are regular hyperbolic n-gons
each of whose interior angles is equal to a given 0 < θ < 1

2(1−
1
n)π.

If θ in the above is taken of the form 2π
m for some natural number m, then we can

obtain a tessellation of the hyperbolic plane by regular polygons, by reflecting such a
polygon along its edges. The condition that θ = 2π

m < 1
2(1 − 1

n)π can be rearranged
exactly into the hypothesis in the lemma, so it holds by assumption.

Using this, we may realise hyperbolic manifold structures on every surface that is not
the torus or the sphere.

Proposition 1.2. For each g ≥ 2, the surface Σg of genus g admits a Riemannian metric
of constant negative sectional curvature. More precisely, there is a discrete torsion-free
subgroup Γ ⩽ Isom(H2) such that Σg is isometric to H2/Γ.

Proof. Recall that Σg may be realised as a quotient of a (regular) 4g-gon P . By
Lemma 1.1, there is a tessellation of H2 by copies of P . Now Isom(H2) acts transitively
on (oriented) line segments of the same length, so that there are isometries realising each
of the side identifications appearing in the above quotient. Let Γ be the subgroup of
Isom(H2) generated by these finitely many isometries.

As any element of Γ preserves the given tessellation of H2, it is straightforward to
check that the action is properly discontinuous. Since H2 is a proper metric space, this
means that Γ is a discrete subgroup of Isom(H2). Finally, observe that Γ fixes no points
of H2. The existence of torsion in Γ would imply the existence of a fixed point, so Γ must
be torsion-free.

The above is essentially a simple case of a more general theorem of Poincaré, which
constructs discrete subgroups of Isom(H2) whose quotient realises any (orbi)surface with
genus g and cone points of order m1, . . . ,mn, provided

2g − 2 +

n∑
i=1

(
1− 1

mi

)
≥ 0.

The quantity on the left is often called the signature of the surface. One can prove
Poincaré’s polygon theorem similarly to the above, but with a more involved construction
of fundamental domain to account for the cone points.

It follows immediately from the above, together with the Milnor–Schwarz Lemma.

Corollary 1.3. Let Σ be a surface of genus g ≥ 2. Then π1Σ is quasi-isometric to H2.

Discrete subgroups of Isom(H2) are often called Fuchsian groups, and discrete sub-
groups of Isom(H3) – and sometimes those of Isom(Hn) – are called Kleinian.

The boundary. Any element of Isom(Hn) has an induced action by homeomor-
phisms on the boundary ∂Hn of hyperbolic space, so there is a well-defined homomor-
phism Isom(Hn) → Homeo(Sn−1) for each n ∈ N. As such, we can attempt to retrieve
information about subgroups of isometries of Hn by analysing their action on the bound-
ary. For individual isometries, this turns out to be very doable.
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Proposition 1.4. Let g ∈ Isom(Hn) be an isometry. Then either
1. g fixes a point in Hn;
2. g fixes exactly one point in ∂Hn; or
3. g fixes exactly two points in ∂Hn,

and these possibilities are mutually exclusive.

We call the isometries elliptic, parabolic, and loxodromic respectively in the above
cases. In each of the above cases, the geometry of the isometry g can be effectively
described. If g is elliptic, then it is a rotation around its fixed point in Hn, since the
stabiliser of any point in Hn is the Lie group O(n). If g is parabolic, then it fixes any
horosphere centred around its fixed point in ∂Hn. A horosphere is the limit of a sequence
of spheres of increasing radii with a shared point of tangency, and its centre is the point
in the boundary that meets the diameter of these spheres. A horosphere is a copy of the
Euclidean plane, embedded in Hn with exponential distortion of the metric. Lastly, a
loxodromic isometry fixes a bi-infinite geodesic joining its two fixed points in ∂Hn, and
acts as a translation when restricted to this axis.

For more general subgroups of isometries than cyclic ones, the situation is naturally
more complicated. Here, the action of the subgroup on a particular subset of the bound-
ary known as its limit set becomes important.

Definition 1.5. Let G ⩽ Isom(Hn). The limit set of G is the subset ΛG ⊆ ∂Hn of
accumulation points of G-orbits in Hn.

Exercise 1.6. Show that ΛG is the smallest G-invariant closed subset of ∂Hn, and that
ΛG is a perfect compactum unless G has a finite index cyclic subgroup.

The study of limit sets and their geometric properties is of much interest. They
are in general fractal subsets of the boundary. Various facts about a subgroup can be
determined from its limit set; we do not pursue these here, but will return to the topic
when discussing boundaries of abstract hyperbolic groups in a later section.

2 Hyperbolic metric spaces

We now introduce a notion of negative curvature for metric spaces. Our definition will be
modelled on a key property of the classical hyperbolic spaces of the previous subsection:
it will state that every geodesic triangle is uniformly thin. That is, triangles in these
spaces will look somewhat like tripods. Triangles are the most basic shapes in a geodesic
space, and so, as we will see, this assumption has some strong consequences for the
geometry of these spaces and the groups that act on them.

We will need some preliminary definitions.

Definition 2.1 (Gromov product). Let (X, d) be a metric space, and x, y, z ∈ X be
points. The Gromov product of x and y with respect to z is

⟨x, y⟩z =
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
.
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One can think of the Gromov product ⟨x, y⟩z as an abstracted notion of the ‘angle’
spanned by x and y with respect to z. Indeed, in Euclidean space, this Gromov product
is exactly the distance of the point z to the points on [x, z] and [y, z] that touch the
incircle of the triangle with vertices x, y, and z – up to homothety, this is determined by
the angle these two lines make.

Definition 2.2 (Thin triangles). Let ∆ be a geodesic triangle with vertices x, y, and z
in a metric space X, and let δ ≥ 0. Call T∆ the tripod with leg lengths ⟨x, y⟩z, ⟨x, z⟩y,
and ⟨y, z⟩z. There is a unique map φ : ∆ → T∆ such that x, y, and z map to the extremal
vertices of T∆ and φ restricts to an isometry on each side of ∆. We say ∆ is δ-thin if
diamφ−1({t}) ≤ δ for all t ∈ T∆.

Definition 2.3 (Hyperbolic metric space). Let X be a geodesic metric space. If there
is δ ≥ 0 such that every geodesic triangle in X is δ-thin, we say that X is a δ-hyperbolic
metric space. We simply call X a hyperbolic metric space if there is some δ ≥ 0 such that
it is a δ-hyperbolic metric space.

Exercise 2.4. Show that a geodesic space is 0-hyperbolic if and only if it is an R-tree:
a space in which every pair of points is connected by a unique arc.

Example 2.5. We saw in the previous subsection that Hn is δ-hyperbolic with hyper-
bolicity constant δ = 1

2 log 3.

Example 2.6. The plane R2 is not a hyperbolic metric space, as for any δ ≥ 0, any
equilateral triangle with side lengths greater than 2δ is not δ-thin.

There are many alternative formulations of the thin triangles condition. One that is
very commonly used and can be useful is the slim triangles formulation.

Definition 2.7. Let ∆ be a geodesic triangle in metric space X, and let δ ≥ 0. We say
that ∆ is δ-slim if each side of ∆ is contained in a δ-neighbourhood of the union of the
other two sides.

Of course, using slim triangles instead of thin triangles gives an identical characteri-
sation of hyperbolic metric spaces, up to a small change in the constant in the definitions.

Exercise 2.8. Show that every δ-thin triangle is δ-slim, and that every δ-slim triangle
is also 2δ-thin.

Exercise 2.9. Show that a if geodesic space X is δ-hyperbolic then it satisfies the four-
point condition: for all x, y, z, w ∈ X, we have

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}+ 2δ.

Further, show that if X satisfies the four-point condition for some δ ≥ 0, there is δ′ ≥ 0
such that X is δ′-hyperbolic.
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Remark 2.10. The four-point condition above can of course be formulated for any metric
space, without any assumption on whether or not geodesics exist. This is frequently
useful, as it allows us to talk about hyperbolicity of discrete metric spaces, such as
groups equipped with a word metric.

An important feature of hyperbolic metric spaces is the ‘stability’ of quasi-geodesics:
all quasi-geodesics actually follow geodesics between their endpoints uniformly closely.
This fact is usually referred to as the Morse Lemma. Note that this feature is particular
to hyperbolic metric spaces; the following example shows that it can dramatically fail
outside of this setting.

Example 2.11. Consider the Cayley graph of Z2 with the standard generating set. Then
take the concatenation of three geodesics of length n, one vertical geodesic going up, one
horizontal going right, and one vertical going down, is a (3, 0)-quasi-geodesic. This path
contains points that are a distance of n from the unique geodesic joining its endpoints
(which is a horizontal path of length n), and we may take n to be arbitrarily large.

In order to obtain the stability statement, we must first obtain an estimate on the
length of paths different from geodesics. Simply stated, we have that the length of a path
grows at least exponentially with its distance from a geodesic between its endpoints.

Lemma 2.12. Let X be a δ-hyperbolic space, and x, y ∈ X. If γ : I → X is a continuous
rectifiable path between x and y, then

d(z, γ(I)) ≤ δmax{0, log2 ℓ(γ)}+ 2

for any z on a geodesic between x and y.

Proof. Let n = ⌈log2 ℓ(γ)⌉ and suppose that γ is a parameterisation proportional to arc-
length, so that we may write I = [0, 1]. If ℓ(γ) ≤ 1 then there is nothing to prove, so
suppose otherwise. It follows that n ≥ 1 is a positive natural number.

Let z be a point on a geodesic from x = γ(0) to y = γ(1). Since triangles in X are
δ-slim, for any k ≥ 0 and i = 1, . . . , 2k, any point on a geodesic [γ( i−1

2k
), γ( i

2k
)] is at

most distance δ from a geodesic of the form [γ( j−1
2k+1 ), γ(

j
2k+1 )] for some 1 ≤ j ≤ 2k+1. It

follows by a finite induction that for any k ≥ 0, there is 1 ≤ i ≤ 2k such that

d(z, p) ≤ δk. (2.1)

where p is a geodesic of the form [γ( i−1
2k

), γ( i
2k
)].

Now for any i = 1, . . . , 2n, the length of the subpath γ restricted to [ i−1
2n , i

2n ] is at
most 1 by the choice of n. Hence any point on a geodesic between γ( i−1

2n ) and γ( i
2n ) is

a distance of less than 1 from γ(I). Combined with (2.1) applied to the case k = n, this
fact gives the required inequality.

Proposition 2.13 (Morse Lemma). Let X be a δ-hyperbolic space, λ ≥ 1, and c ≥ 0.
There is a constant M = M(λ, c, δ) ≥ 0 such that any (λ, c)-quasi-geodesic segment in X
is a Hausdorff distance of at most M from any geodesic segment between its endpoints.
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Proof (first half): Let γ : I → X be a (λ, c)-quasi-geodesic segment, and write x and y
for its endpoints. Applying the lemma on continuous quasi-geodesics, there is a (λ, c′)-
quasi-geodesic γ′ : J → X with the same endpoints as γ, lying a Hausdorff distance of at
most c′ from γ. We may suppose that γ′ is parametrised by arc-length. Fix a geodesic p
whose endpoints are also x and y. Let z be a point on p maximising r = d(z, γ′), which
exists by continuity. We will exhibit an absolute bound on r.

Let x′ and y′ be points on p between x and z and y and z respectively, with d(x′, z) =
d(y′, z) = 2r (choosing x′ = x or y′ = y if d(x, z) ≤ 2r or d(y, z) ≤ 2r respectively). By
the definition of z, we have

d(x′, γ′) ≤ r and d(y′, γ′) ≤ r.

Let s, t ∈ [a, b] be points such that d(x′, γ′(s)) and d(y′, γ′(t)) realise the distances from
x′ and y′ to γ′, which again exist by continuity. We will say s ≤ t, swapping the names
if otherwise. It follows then, that

d(γ′(s), γ′(t)) ≤ d(γ′(s), x′) + d(x′, y′) + d(y′, γ′(t)) ≤ 6r

Write ξ for concatenation of the subpath of γ′ between γ′(s) and γ′(t) with geodesics
[x′, γ′(s)] and [γ′(t), y′]. Now using the fact that γ′ is a quasi-geodesic, the above implies
that

ℓ(ξ) ≤ r + ℓ(γ′|[s,t]) + r ≤ (6λ+ 2)r + λc′.

Then by Lemma 2.12 and the choice of z, we have

r = d(z, ξ) ≤ δ log2((6λ+ 2)r + λc′) + 2.

Rearranging slightly, we have

2
1
δ
(r−1) ≤ (6λ+ 2)r + λc′

so that an exponential function in r is bounded above by a linear function in r. This
imposes a uniform bound M ′ on r depending on these two functions, which in turn
depend only on δ, λ, and c. Thus p is contained in a M ′-neighbourhood of γ′.
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