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Abstract. We show that a central extension of locally quasiconvex subgroup separa-
ble hyperbolic group is product separable, so long as it is subgroup separable. We also
establish that a central extension of a double coset separable group by a finitely gen-
erated group is double coset separable if and only if it is subgroup separable, and that
double coset separability is stable under taking direct products with finitely generated
nilpotent groups.

1. Introduction

Any group G can be equipped with the profinite topology by declaring (left) cosets of
finite index subgroups to be a basis of open subsets. A subset U ⊆ G is called separable
if it is closed with respect to the profinite topology on G. Determining separability of
subgroups and subsets has become an important theme in geometric group theory. In
this paper we investigate separability properties in certain types of group extensions.

We say that G is residually finite if the trivial subgroup of G is separable, subgroup
separable (or LERF – locally extended residually finite) if every finitely generated sub-
group of G is separable, double coset separable if every double coset of finitely generated
subgroups of G is separable and, for a fixed natural number n, n-coset separable if the
setwise product of any n finitely generated subgroups is separable. In the limiting case,
we say G is product separable if it is n-coset separable for all natural numbers n. This
property is sometimes referred to as the Ribes–Zalesskii property in the literature.

Until recently, very few groups were known to be product separable. Finitely generated
abelian groups are trivially product separable, as they are subgroup separable and every
product of subgroups is itself a subgroup, and the property passes to subgroups and finite
index overgroups. Free groups were the first non-trivial examples of groups shown to
possess this property: this was proven by Ribes and Zalesskii using the theory of profinite
trees [RZ93]. With language theoretic techniques, Coulbois showed that the property is
preserved under free products and some amalgams with free groups [Cou01; Cou00]. The
author and Minasyan showed using hyperbolic geometry that many nonpositively curved
groups are product separable, including all Kleinian groups and subgroup separable
fundamental groups of graphs of free groups with cyclic edge groups [MM25].

Product separability is a very strong residual property, and has a variety of surprising
applications and equivalences. The property was first considered in its connection with
finite semigroup theory: Pin and Reutenauer showed that the Rhodes’ conjecture, a
statement about the computability of an important subsemigroup of a finite semigroup,
reduces to product separability in free groups [PR91]. Shepherd recently showed the
separability of products of convex-cocompact subgroups in specially cubulated groups,
and applied this to their actions on their contact graphs [She25]. It has also been a
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key ingredient in establishing extensions of partial automorphisms of various structures
[HL00; AW24]. Moreover, for a countable group, product separability is equivalent to
the finite approximability of isometric actions of the group on metric spaces [Ros11]. We
also note that while the weaker notion of double coset separability is more ubiquitous,
there are classes of groups whose double coset separability is only known through proofs
of their product separability.

A finitely generated group G is hyperbolic if it admits a proper and cocompact action
by isometries on a hyperbolic metric space. Archetypal examples of hyperbolic groups
include (small cancellation quotients of) free groups and fundamental groups of compact
hyperbolic manifolds.

In this paper we deal with finitely generated subgroups of extensions of hyperbolic
groups. Among the class of hyperbolic groups themselves, arbitrary finitely generated
subgroups may be quite wild [Rip82]. On the other hand, the quasiconvex subgroups
of hyperbolic groups – subgroups that act properly and cocompactly on a quasiconvex
subspace – are relatively well-behaved. Indeed, they are necessarily hyperbolic them-
selves. A hyperbolic group in which all finitely generated subgroups are quasiconvex
is called locally quasiconvex ; examples include the fundamental groups of free groups,
surface groups [Pit93], and some small cancellation groups [MW05; MW08].

Pushing the methods of [RZ93] further, You extended the product separability of free
groups to groups of the form F ×Z where F is a free group [You97]. We view this as the
simplest kind of central extension of a free group which is not immediately seen to be
product separable. On the other hand, Minasyan showed that hyperbolic groups that
are locally quasiconvex and subgroup separable are in fact product separable [Min06].
Our main result builds on both of these statements.

Theorem 1.1. Let G be a central extension of a subgroup separable locally quasiconvex
hyperbolic group. If G is subgroup separable, then it is product separable.

In fact, we establish an a priori more general statement: see Theorem 4.4. Some
assumption on the profinite topology of the extension G above is to be expected, as
in general central extensions do not preserve residual properties [Del78]. Note that the
centrality of the extensions is essential in the above: there are split extensions G = A⋊Q,
where A is finitely generated free abelian and Q is finitely generated virtually free, such
that G is subgroup separable but not double coset separable [Min23].

As a consequence of the above we obtain

Corollary 1.2. A central extension of a hyperbolic limit group is product separable. In
particular, the fundamental group of any circle bundle over a compact hyperbolic surface
is product separable.

Product separability of limit groups (which are, in general, toral relatively hyperbolic)
was proven by the author and Minasyan [MM25]. In general, the above is false for all
limit (or even surface) groups: the integral Heisenberg group Heis3 Z is a cyclic central
extension of Z2, but is not even triple coset separable [LW79]. This further reinforces
the apparent strong link between negative curvature and separability properties.

We also establish some results concerning double coset separability in extensions.

Theorem 1.3. Let G be a central extension of a double coset separable group by a finitely
generated group. Then G is double coset separable if and only if it is subgroup separable.
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The above may be compared with the main result of [MTT22]. Again, the example
of a split extension noted above shows that centrality of the extension is a necessary
assumption in the theorem. The simplest form of a central extension is a direct product
with an abelian group: these are the split central extensions. Generalising such an ex-
tension in a different manner, we may consider direct products with non-abelian groups.
The same methods as above prove:

Theorem 1.4. Let G be a double coset separable group and N a finitely generated
nilpotent group. Then the direct product G×N is double coset separable.

One might reasonably expect that G × P is double coset separable for P polycyclic,
though our method does not seem to go through in this case. Indeed, centrality is still
a key factor in the argument and polycyclic groups may be centreless, whereas infinite
nilpotent groups have infinite centres. Such a statement would probably constitute the
best closure property for double coset separability one can hope for as far as taking
a product is concerned; Lennox and Wilson proved that the all polycyclic groups are
double coset separable, while in general even finitely generated metabelian groups fail
to be [LW79].

Acknowledgements. The author would like to thank Ashot Minasyan for many
helpful discussions. This work received funding from the European Union (ERC, SAT-
URN, 101076148) and the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813.

2. Preliminaries

In this section we collect some essential preliminary material. Let us recall the fol-
lowing standard definitions.

Definition 2.1 (Hyperbolic metric space). Let X be a geodesic metric space. Given
a constant δ ≥ 0, a geodesic triangle in X is δ-slim if each of its sides is contained in
a δ-neighbourhood of the other two. We say X is a hyperbolic metric space if there is
δ ≥ 0 such that every geodesic triangle in X is δ-slim.

Note that a finitely generated group is hyperbolic if and only if any of its Cayley
graphs with respect to a finite generating set are hyperbolic metric spaces. As is usual,
for a path p in a metric space we will denote by p− and p+ the initial and terminal
endpoints of p. For the sake of simplicity, we will assume that all paths are continuous
in this paper.

Definition 2.2 (Quasigeodesic). Let λ ≥ 1 and c ≥ 0. A path p : [a, b] → X in geodesic
metric space X is called (λ, c)-quasigeodesic if for any subpath q of p,

ℓ(q) ≤ λ d(q−, q+) + c,

where ℓ(q) denotes the length of the subpath q.

Definition 2.3 (Broken line). Let X be a geodesic metric space. A broken line in X is
a path p that has a (fixed) decomposition as a sequence of geodesic subpaths p1, . . . , pn,
with (pi)+ = (pi+1)− for each i = 1, . . . , n− 1.
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For three points x, y, z in metric space X, the Gromov product of x and y based at z
is a measure of the angle between x and y measured from z. It is given by the formula

⟨x, y⟩z =
1

2

(
d(x, z) + d(y, z)− d(x, y)

)
.

The following gives a useful criterion for broken lines to be quasigeodesics with well-
controlled constants in hyperbolic metric spaces (cf. [Min05, Lemma 4.2]).

Lemma 2.4 ([MM25, Lemma 4.10]). Suppose that X is a δ-hyperbolic metric space. Let
c0, c1, and c2 be constants such that c0 ≥ 14δ, c1 = 12(c0 + δ) + 1 and c2 = 10(δ + c1).
Suppose that p = p1 . . . pn is a broken line in X, where pi is a geodesic with (pi)− = xi−1,
(pi)+ = xi, i = 1, . . . , n. If d(xi−1, xi) ≥ c1 for i = 1, . . . , n, and ⟨xi−1, xi+1⟩xi ≤ c0 for
each i = 1, . . . , n− 1, then the path p is (4, c2)-quasigeodesic.

Definition 2.5. (Quasiconvex subgroup) A subspace Y of a geodesic metric space X is
called σ-quasiconvex if there is some σ ≥ 0 such that every geodesic in X with endpoints
in Y lies in a σ-neighbourhood of Y .

Let G be a hyperbolic group, and Q ⩽ G a finitely generated subgroup. We say
that Q is quasiconvex if there is σ ≥ 0 such that, as a subset of G, it is σ-quasiconvex
in a Cayley graph Γ of G with respect to a finite generating set. Such σ is called a
quasiconvexity constant of Q with respect to Γ.

Note that while being quasiconvex does not depend on the choice of Cayley graph
for subgroups of hyperbolic groups, the particular quasiconvexity constant does. The
following lemma tells us that quasiconvex subgroups are in a sense ‘orthogonal’, modulo
their intersections. Given G and a Cayley graph Γ for G equipped with the edge-path
metric d, we write

|g| = d(1, g)

for an element g ∈ G.

Lemma 2.6 ([Min06, Lemma 2.3]). Let G be a hyperbolic group and let H,K ⩽ G be
quasiconvex subgroups. Suppose that δ ≥ 0 is a hyperbolicity constant for a Cayley graph
Γ of G and σ ≥ 0 is a quasiconvexity constant for H and K with respect to Γ. There
is a constant c0 = c0(δ, σ) ≥ 0 such that if h ∈ H is such that |h| is minimal among
elements of h(H ∩K), then ⟨1, hk⟩h ≤ c0 for any k ∈ K.

The next two lemmas are elementary statements dealing with double cosets.

Lemma 2.7. Let G be a group with central subgroup Z ⩽ Z(G). Let H,K ⩽ G be
finitely generated subgroups. Then HK ∩ Z is a subgroup of Z.

Proof. Let h1, h2 ∈ H, k1, k2 ∈ K be such that hiki = zi is an element of Z for i = 1, 2.
Since Z is central, hi = zik

−1
i = k−1

i zi. It follows that hiki = zi = kihi, so hi and ki
commute and their product is central in G. In particular, k−1

2 h−1
2 = h−1

2 k−1
2 is central.

Thus h1k1k
−1
2 h−1

2 = h1h
−1
2 k−1

2 k1 ∈ HK, concluding the lemma. □

Lemma 2.8. Let G be a group, H,K ⩽ G subgroups, and π : G→ Q a homomorphism.
Write Z = kerπ. If HK ∩ Z = {1}, then π(H) ∩ π(K) = π(H ∩ K). Moreover, if
H ∩ Z = {1} and K ∩ Z = {1}, the converse also holds.
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Proof. Suppose that g ∈ π(H) ∩ π(K). There are elements h ∈ H and k ∈ K with
π(h) = π(k) = g. Thus h = zk for some z ∈ Z. But then hk−1 = z ∈ HK ∩ Z, which is
trivial by the hypothesis. Therefore, h = k ∈ H ∩K and so g ∈ π(H ∩K). The reverse
inclusion is immediate.

For the latter statement, suppose that H ∩ Z = K ∩ Z = {1} and let g ∈ HK ∩ Z.
Then g = hk for some h ∈ H and k ∈ K. As g ∈ Z, we have π(h) = π(k)−1, which is
an element of π(H) ∩ π(K) = π(H ∩K). Therefore π(h) = π(x) for some x ∈ H ∩K.
Since H ∩ Z = {1}, we must have h = x ∈ H ∩K. But then g ∈ K ∩ Z = {1}. □

Extensions and the profinite topology. For the following, assume that G is an
extension of the group Q by the group Z. That is, G fits into the short exact sequence

1 → Z → G→ Q→ 1.

We call Q highly residually finite if G is residually finite whenever Z is finite. This
property was introduced by Corson and Ratkovich under the moniker ‘super residual
finiteness’ [CR06]. Remarkably, highly residually finite groups are exactly the class of
groups that are residually finite and have separable cohomology in degree 2 [Lor08].

A group is called strongly subgroup separable (or ERF – extended residually finite) if
all of its subgroups are separable. Allenby and Gregorac showed that a split extension of
a subgroup separable group by a finitely generated strongly subgroup separable group is
again subgroup separable [AG73]. In the same spirit we can show that certain non-split
extensions are subgroup separable. The statement is likely known, but does not appear
in the literature to the author’s knowledge.

Lemma 2.9. Suppose Q is subgroup separable and Z is finitely generated and strongly
subgroup separable. If Q is highly residually finite, then G is subgroup separable.

Proof. Let H ⩽ G be a finitely generated subgroup, and g /∈ H. If π(g) /∈ π(H),
then since Q is subgroup separable there is a finite quotient φ : Q → P such that
φπ(g) /∈ φπ(H) and we are done. Therefore we may suppose π(g) ∈ π(H). That is,
g ∈ HZ. Let {Zn |n ∈ N} be an enumeration of all the characteristic cores of finite
index subgroups of Z. As Z is finitely generated, each Zn has finite index in Z and, by
construction, we have that

⋂
UZn = U for any separable subset U ⊆ Z. Moreover, since

Z is strongly subgroup separable, it follows that
⋂
(H ∩ Z)Zn = H ∩ Z.

We show that there is n such that g /∈ HZn. Indeed, suppose otherwise, so that for
ever m there are hm ∈ H and zm ∈ Zm with g = hmzm. Since g ∈ HZ and g /∈ H, we
have that g = hz for some h ∈ H and z ∈ Z with z /∈ H ∩ Z. There is thus n such that
z /∈ (H ∩ Z)Zn. But then g = hz = hnzn, so zz

−1
n = h−1hn ∈ H ∩ Z. This gives that

z = h−1hnzn ∈ (H ∩ Z)Zn, a contradiction.
Since Zn is characteristic in Z, it is normal in G. Thus we have the exact sequence

1 → Z/Zn → G/Zn → Q→ 1.

As Z/Zn is finite and Q is highly residually finite, G/Zn is residually finite. Hence
there is a finite index subgroup G′ ⩽f G/Zn with G′ ∩ Z/Zn = {1}. That is, G′ maps
injectively into Q, so G′ is subgroup separable. Hence G/Zn is also subgroup separable.
Since g /∈ HZn, there is a finite quotient ψ : G/Zn → P with ψ(g) /∈ ψ(HZn), completing
the proof. □
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Remark 2.10. For our main results, we will need the kernels of central extensions to be
finitely generated. Finite presentability of the quotient Q implies this condition. Indeed,
in this case Z is finitely normally generated in G which, given that Z is central in G,
means that Z is finitely generated. Note that every countable abelian group appears as
the centre of some finitely generated group [Oul07].

We conclude with a series of elementary observations about the separability of prod-
ucts of subgroups in groups.

Lemma 2.11. Let H1, . . . ,Hn ⩽ G be finitely generated subgroups. If K ◁G is normal
and G/K is n-coset separable, then H1 . . . HnK is separable in G.

Proof. Let ρ : G→ G/K be the quotient map. The subset H1 . . . H1K is the full preim-
age of ρ(H1 . . . Hn) = ρ(H1) . . . ρ(Hn), which is separable in G/K by the hypothesis.
As homomorphisms are continuous with respect to the profinite topology, H1 . . . HnK is
separable in G. □

Lemma 2.12. Let H1, . . . ,Hn ⩽ G be finitely generated subgroups. Suppose that the
product H1 . . . Hn contains a normal subgroup K◁G such that G/K is n-coset separable.
Then the product H1 . . . Hn is separable.

Proof. It follows from the hypotheses that

H1 . . . Hn = H1 . . . HnK.

The result is now a consequence of Lemma 2.11. □

Lemma 2.13. Suppose that G is subgroup separable, Z is finitely generated, and Q is
n-coset separable. Let H1, . . . ,Hn ⩽ G be finitely generated subgroups. If K ⩽f Z, then
the product H1 . . . HnK is separable in G.

Proof. Let K ⩽f Z be an arbitrary finite index subgroup of Z. Since Z is finitely
generated, there isK ′ ⩽f K which is characteristic in Z, and hence normal in G. Since G
is subgroup separable, K ′ is separable in G. Therefore there is G′ ⩽f G with G′∩Z = K ′.
Since K ′ is normal in G, we may take G′ to be normal in G also (replacing it by its
normal core if necessary). Thus G′ fits into the exact sequence 1 → K ′ → G′ → Q′ → 1,
where Q′ = π(G′) ⩽f Q is a finite index subgroup of Q. As Q′ is a subgroup of Q, it is
also n-coset separable.

For each i, let Ti = G′ ∩ Hi ⩽f Hi. Since G′ is normal, any G-conjugate of Ti is
contained in G′. Hence the product T g1

1 . . . T gn
n is contained in G′ for any g1, . . . , gn ∈ G.

Now G′/K ′ ∼= Q′ is n-coset separable so by Lemma 2.11, the product T g1
1 . . . T gn

n K ′ is
separable in G′. As H1 . . . HnK is a finite union of translates of such products, the
lemma follows from this statement. □

3. Double coset separability

In this section we will prove Theorems 1.3 and 1.4. Let G be an extension of Q by Z,
so that π : G→ Q is a surjective homomorphism with kernel Z = kerπ ⩽ G.

Lemma 3.1. Suppose G and Q are subgroup separable, and that Z is finitely generated.
Let H ⩽ G be finitely generated and let K ⩽ Z be an arbitrary subgroup. If (H ∩ Z)K
is separable in Z, then HK is separable in G.
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Proof. Let Zn ◁f Z be an enumeration of normal cores of the finite index subgroups of
Z. By our assumption, (H ∩ Z)K is separable in Z, so that

(3.1)
⋂
n≥1

(H ∩ Z)KZn = (H ∩ Z)K.

For each n, Lemma 2.13 tells us that the double coset HZn is separable in G. Since
Zn ◁f Z and K ⩽ Z, the triple coset HKZn is a finite union of right translates of HZn,
and is thus separable in G also. We will show that the double coset HK is approximated
by such triple cosets.

Suppose that g ∈ HKZn for every n ≥ 1, so that g = hnknzn with hn ∈ H, kn ∈
K, zn ∈ Zn. We write h = h1, k = k1, and z = z1 for ease of reading. Then for each
n ≥ 1,

h−1
n h = knznz

−1k−1 ∈ H ∩ Z.
Rearranging, then, we have for all n ≥ 1

kzk−1 = (h−1hn)(knk
−1)(kznk

−1) ∈ (H ∩ Z)KZn,

where the inclusion uses the fact that Zn◁Z, so kznk−1 ∈ Zn. It follows from (3.1) that
kzk−1 ∈ (H ∩ Z)K. But then g = hkz = hkzk−1k ∈ H(H ∩ Z)KK = HK. This shows
that HK =

⋂
n≥1HKZn is closed. □

As an immediate consequence, we obtain the following.

Proposition 3.2. Suppose G and Q are subgroup separable, Z is slender and double
coset separable, and K ⩽ Z. If K ◁G then G/K is subgroup separable.

Proof. Under the quotient map G → G/K, the full preimage of any finitely generated
subgroup of G/K is a double coset HK, where H is a finitely generated subgroup of G.
By Lemma 3.1, HK is separable in G. Now, homomorphisms are open maps onto their
images with respect to the profinite topologies, yielding the result. □

In the special case of a central extension, the kernel of the extension is abelian and so
product separable. Thus the hypotheses of the above proposition is met, given that the
group and its quotient are subgroup separable.

Corollary 3.3. Let G be a central extension of a subgroup separable group by finitely
generated Z ⩽ Z(G). If G is subgroup separable then so is G/K for any K ⩽ Z.

The following is implicitly proven as [You97, Theorem 3.3]; the result is only stated
for Q a free group but the proof only uses the fact that it is double coset separable.

Proposition 3.4. Suppose Q is double coset separable and Z = ⟨a⟩ is infinite cyclic.
Then the direct product Q× Z is double coset separable.

It is an immediate consequence that Q × A is double coset separable whenever Q is
double coset separable and A is finitely generated abelian. As stated in the introduction,
we are able to extend this result in a couple of ways.

Lemma 3.5. Suppose Z is finitely generated and residually finite. Let H,K ⩽ G be
subgroups with HK ∩Z = {1}. If G/Z ′ is double coset separable for every Z ′ ⩽f Z with
Z ′ ◁G, then HK is separable in G.
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Proof. As Z is finitely generated and residually finite, there is a sequence {Zn |n ∈ N}
of finite index characteristic subgroups of Z with

⋂
n≥1 Zn = {1}. Moreover, as each

Zn characteristic in Z, we have that Zn ◁ G. By assumption then, the groups G/Zn

are double coset separable. Hence by Lemma 2.11, each of the triple cosets HKZn is
separable in G.

Suppose that g /∈ HK but g belongs to the profinite closure of HK. As G/Z is
double coset separable by assumption, the triple coset HKZ is separable in G. Since
this subset contains HK, we must have g ∈ HKZ. That is, we have g = hkz for some
h ∈ H, k ∈ K, and z ∈ Z. Similarly, g ∈ HKZn = HZnK for every n ≥ 1. That is, for
each n ≥ 1, we have g = hnznkn, where hn ∈ H, kn ∈ K, and zn ∈ Zn. It follows that

h−1
n hkk−1

n = zn(knz
−1k−1

n ) ∈ HK ∩ Z,

where the membership is due to the fact that Z is normal in G. By assumptionHK∩Z =
{1}, so that znknz

−1k−1
n = 1 for every n ≥ 1. But then z = k−1

n znkn ∈ Zn for all n ≥ 1.
As

⋂
n≥1 Zn = {1}, we conclude that z = 1 and so g ∈ HK as required. □

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that G is a central extension of a double coset separable
group Q by a finitely generated group Z. We will induct on the free rank r(Z) of Z. If
r(Z) = 0, then Z is finite. In this case, G is residually finite by assumption and is thus
commensurate to Q, which is double coset separable. Suppose then that r(Z) > 0 and
that the statement holds for all lesser values. The group Z has a finite index free abelian
subgroup Z ′. As G is subgroup separable, there is a finite index subgroup G′ ⩽f G such
that G′ ∩ Z = Z ′. We write Q′ = π(G′) ⩽f Q, which is also double coset separable.
The sequence 1 → Z ′ → G′ → Q′ → 1 is thus again a short exact sequence for a central
extension, and G is double coset separable if and only if G′ is. We may therefore assume
without loss of generality that Z = Z ′ is free abelian (so G = G′ and Q = Q′).

LetH1, H2 ⩽ G be finitely generated subgroups ofG. If the intersectionK = H1H2∩Z
is nontrivial, then it is a subgroup of Z by Lemma 2.7. Moreover, as Z is torsionfree,
the subgroup K is infinite in this case.

We have the formula of ranks r(Z) = r(K) + r(Z/K). As K is infinite, its rank is
at least 1 and therefore r(Z/K) < r(Z). Now the group G/K fits into the short exact
sequence 1 → Z/K → G/K → Q → 1 and is subgroup separable by Corollary 3.3. The
induction hypothesis thus implies that G/K is double coset separable. But then H1H2

is separable by Lemma 2.12, so we are done.
Suppose instead that H1H2 ∩ Z = {1}. We need only verify the hypotheses of

Lemma 3.5. Let Z ′ ⩽f Z be such that Z ′ ◁ G. As Z ′ has finite index in Z, we
have r(Z/Z ′) = 0. In particular, G/Z ′ is a double coset separable by the base case of
the induction. Therefore Lemma 3.5 shows that H1H2 is separable in G. □

When the extension above is split (i.e. G is a direct product of Q and Z), G must be
subgroup separable, so we recover the result of You. In fact, we may extend the result
from abelian to nilpotent groups as in Theorem 1.4. The proof of this proceeds essentially
verbatim to that above; one need only replace the word ‘abelian’ with ‘polycyclic’, the
inductive quantity of free abelian rank with that of the Hirsch length, and the role of Z
is taken by the centre of the nilpotent factor N (which is necessarily infinite).
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Note that this proof only uses the a priori weaker hypotheses that N is polycyclic and
every infinite quotient of N has a finite index torsionfree subgroup with infinite centre.
However, it is straightforward to see that this class coincides with the class of finitely
generated virtually nilpotent groups.

4. Product separability

Our main tool for showing product separability for extensions will be a combinatorial
property, which roughly states that essentially any way one writes a given element as a
product of elements from some fixed collection of subgroups has one of the factors lying
in a finite set.

Observe that, given subgroups H,K and g ∈ HK, there may be many ways to write
g as a product of an element of H and one of K. Indeed, if g = hk is such a product
and H ∩K is infinite, (hs)(s−1k) gives infinitely many different decompositions of g as
s ranges over H ∩K. This motivates the following relation on such products.

Definition 4.1 (Product representatives). Let G be a group and H1, . . . ,Hn ⩽ G be
subgroups. Given g ∈ H1 . . . Hn, a product representative of g is a tuple (h1, . . . , hn) ∈
H1 × · · · ×Hn such that g = h1 . . . hn.

For i = 1, . . . , n− 1, write Si = Hi ∩Hi+1. We say that two product representatives
(h1, . . . , hn) and (k1, . . . , kn) are equivalent if there are elements s1 ∈ S1, . . . , sn−1 ∈ Sn−1

such that si−1ki = hisi for each i = 1, . . . , n (where s0 = sn = 1).

The relation defined above is easily seen to be an equivalence relation.

Definition 4.2 (Bottlenecked product representatives). Let G be a group and C be a
class of subgroups. We say that G has bottlenecked product representatives over C if for
any H1, . . . ,Hn ∈ C, any g ∈ H1 . . . Hn, there is a set R ⊆ H1 × · · · × Hn of product
representatives of g such that the projection R→ Hi is finite for some i = 1, . . . , n, and
every product representative of g is equivalent to some product representative in R.

Remark 4.3. We note that the property of having bottlenecked product representa-
tives even over cyclic subgroups appears to be quite restrictive. Indeed, suppose that
G contains a non-cyclic free abelian subgroup. Let H = ⟨a⟩ and K = ⟨b⟩ be distinct
summands of this subgroup. Then 1 = anbna−nb−n form infinitely many product repre-
sentatives of the identity element in the quadruple coset HKHK, and since H ∩K is
trivial, each lies in its own one-element equivalence class. Hence the identity is a witness
to the failure of this property for such a group G.

We are now ready to prove our main technical theorem.

Theorem 4.4. Let G be a central extension of a product separable group Q by a finitely
generated group. If G is subgroup separable and Q has bottlenecked product representa-
tives over finitely generated subgroups, then G is product separable.

Proof. Let 1 → Z → G → Q → 1 be the short exact sequence corresponding to the
extension, so Z ⩽ Z(G), and denote the quotient map by π : G→ Q. We will begin with
a basic reduction. As Z is finitely generated abelian, it has a free abelian subgroup Z ′

of finite index. As G is subgroup separable, it has a finite index subgroup G′ for which
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G′∩Z = Z ′. Now G is product separable if and only if G′ is, so we may assume without
loss of generality that Z is itself free abelian.

We proceed by a double induction on the number of subgroups n and the rank r of Z
as a free abelian group. The base cases n = 0 or r = 0 hold trivially: respectively these
are the statements that G is residually finite, and that G is isomorphic to Q, which is
product separable by assumption.

Suppose n ≥ 1, r ≥ 1 and that the statement holds for n′ < n or r′ < r. Let
H1, . . . ,Hn ⩽ G be finitely generated subgroups of G.

Lemma 2.7 tells us that for each i = 1, . . . , n− 1, the intersection K = HiHi+1 ∩Z is
a subgroup of Z. Suppose that K is nontrivial. As Z is central, K is normal in G and,
as Z is free abelian, K is infinite. Therefore Z/K is an abelian group of rank strictly
less than r and we have the exact sequence

1 → Z/K → G/K → Q→ 1

which is a central extension of Q by Z/K. Moreover, G/K is subgroup separable by
Corollary 3.3. Thus, by the induction hypothesis, G/K is product separable. It follows
from Lemma 2.12 that H1 . . . Hn is separable. We may thus assume that HiHi+1 ∩Z =
{1} for each i = 1, . . . , n− 1. It follows that Hi ∩ Z = {1} for each i = 1, . . . , n, and so
each of the projections Hi → π(Hi) are injective. Moreover, by Lemma 2.8 we have

(4.1) π(Hi) ∩ π(Hi+1) = π(Hi ∩Hi+1)

for each i = 1, . . . , n− 1.
We will approximateH1 . . . Hn by products of the formH1 . . . HnZ

m. By Lemma 2.13,
all such products are separable. Suppose for a contradiction that g /∈ H1 . . . Hn is in the
closure of H1 . . . Hn with respect to the profinite topology. It follows that

g ∈
⋂
m≥1

H1 . . . HnZ
m.

By definition, we have for each m ≥ 1

g = h
(m)
1 . . . h(m)

n z(m)

where h
(m)
i ∈ Hi and z

(m) ∈ Zm.

For each i and m, let us write x
(m)
i = π(h

(m)
i ), so that (x

(m)
1 , . . . , x

(m)
n ) is a product

representative for π(g) for eachm ≥ 1. Now Q has bottlenecked products representatives
over finitely generated subgroups; let R be the set of equivalence class representatives
of product representatives of G given by the definition, with the projection R → π(Hj)

finite for some j = 1, . . . , n. That is, there is some product representative (y
(m)
1 , . . . , y

(m)
n )

of π(g) equivalent to (x
(m)
1 , . . . , x

(m)
n ) such that

(4.2)
∣∣∣{y(m)

j |m ≥ 1
}∣∣∣ <∞.

By definition, there are elements t
(m)
i ∈ π(Hi) ∩ π(Hi+1) with t

(m)
i−1y

(m)
i = x

(m)
i t

(m)
i

for i = 1, . . . , n (writing t
(m)
0 = t

(m)
n = 1). As y

(m)
i ∈ π(Hi), there is k

(m)
i ∈ Hi with

π(k
(m)
i ) = y

(m)
i . Moreover, by (4.1), t

(m)
i ∈ π(Hi∩Hi+1), so there is some s

(m)
i ∈ Hi∩Hi+1
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with π(s
(m)
i ) = t

(m)
i (again taking s

(m)
0 = s

(m)
n = 1). Now for i = 1, . . . , n, we have

π(s
(m)
i−1k

(m)
i ) = t

(m)
i−1y

(m)
i

= x
(m)
i t

(m)
i

= π(h
(m)
i s

(m)
i ).

However, we have observed that π is injective restricted to Hi, so in fact s
(m)
i−1k

(m)
i =

h
(m)
i s

(m)
i for each i. This implies that (h

(m)
1 , . . . , h

(m)
n ) and (k

(m)
1 , . . . , k

(m)
n ) are equivalent

product representatives in H1 . . . Hn. That is, we have

g = k
(m)
1 . . . k(m)

n z(m)

for each m ≥ 1.

Now by (4.2), we may pass to a subsequence for which yj = y
(m)
j is constant. The

fact that the projection Hj → π(Hj) is injective implies that the elements kj = k
(m)
j are

constant also. Thus g ∈ H1 . . . Hj−1kjHj+1 . . . HnZ
m for each m ≥ 1. By the induction

hypothesis the set H1 . . . Hj−1kjHj+1 . . . Hn is separable, so there is some N ◁f G with
g /∈ K = H1 . . . Hj−1kjHj+1 . . . HnN . Since N ∩ Z ⩽f Z, the subgroup N contains Zm

for large enough m ≥ 1. This implies K contains H1 . . . Hj−1kjHj+1 . . . HnZ
m and thus

g, a contradiction. □

Proposition 4.5. Let Q be a hyperbolic group. Then Q has bottlenecked product repre-
sentatives over the class of quasiconvex subgroups.

Proof. Let δ a hyperbolicity constant for a Cayley graph Γ of Q with respect to a
finite generating set. Let H1, . . . ,Hn ⩽ Q be quasiconvex subgroups with quasiconvex-
ity constant σ ≥ 0, and let g ∈ H1 . . . Hn. Take c0 = c0(δ, σ) to be the constant of
Lemma 2.6, and c1 = c1(c0), c2 = c2(c0) be the corresponding constants of Lemma 2.4.
Let (h1, . . . , hn) be a product representative of g. We will show that (h1, . . . , hn) is
equivalent to some (k1, . . . , kn) with |ki| bounded for some i = 1, . . . , n. As the word
metric is proper, this shows that Q has bottlenecked product representatives.

There is k1 ∈ h1(H1 ∩H2) such that |k1| is minimal among elements in this coset. By
definition, k1 = h1s1 for some s1 ∈ H1∩H2. We continue by induction: for i = 2, . . . , n−1
take ki ∈ si−1hi(Hi∩Hi+1) to be such that |ki| is minimal in this coset. As before, there
is si ∈ Hi∩Hi+1 such that si−1hi = kisi. Finally let kn = sn−1hn. From the construction
it is immediate that (h1, . . . , hn) and (k1, . . . , kn) are equivalent product representatives
of g.

Now define the path p in Γ to be a broken line with nodes 1, k1, k1k2, . . . , k1 . . . kn = g.
That is, p is a broken line whose initial vertex is the identity and whose segments
are labelled by k1, . . . , kn. By Lemma 2.6, we have that ⟨1, kiki+1⟩ki ≤ c0 for each
i = 1, . . . , n − 1. If there is some i = 1, . . . , n such that |ki| ≤ c1 then we are done,
so suppose otherwise. In this case, we may apply Lemma 2.4 to see that p is (4, c2)-
quasigeodesic in Γ. This gives, for each i = 1, . . . , n,

|ki| ≤ ℓ(p) ≤ 4|p|+ c2 = 4|g|+ c2,

completing the proof. □
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We can now combine the above to prove our main theorem.

Proof of Theorem 1.1. Let G be an extension of subgroup separable locally quasicon-
vex hyperbolic group Q by a group Z. It is well known that hyperbolic groups are
finitely presented, so Remark 2.10 tells us that Z is finitely generated. Proposition 4.5
tells us that Q has bottlenecked product representatives over the class of quasiconvex
subgroups. Moreover, by the main result of [Min06], the product of finitely many quasi-
convex subgroups of Q is separable in Q. As Q is locally quasiconvex, the above implies
it has bottlenecked product representatives over all finitely generated subgroups and
that it is product separable. Assuming G is subgroup separable, the result now follows
immediately by an application of Theorem 4.4. □

Marginally more work gives us the corollary from the introduction.

Proof of Corollary 1.2. Let Q be a hyperbolic limit group and G a central extension of
Q by a finitely generated group. All limit groups are subgroup separable by the work
of Wilton [Wil08]. Moreover, limit groups are highly residually finite [GJZ08], and so
by Lemma 2.9, the extension G is subgroup separable. Finally, limit groups are locally
quasiconvex [Dah03]. Hence, Theorem 1.1 applies to hyperbolic limit groups.

Let M be a circle bundle over compact hyperbolic surface Σ. If the fibre group π1S
1

has finite image in π1M , then π1M and π1Σ are commensurable and we are done, so
suppose otherwise. ThenM has a two-sheeted cover (orientable)M ′ for which the image
of π1S

1 is central in π1M
′. Now π1M

′ is a central extension of π1Σ
′, for a two-sheeted

cover Σ′ of Σ. The result now follows as orientable surface groups are limit groups. □
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