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1. PREFACE 4

1. Preface

These notes follow a course in geometric group theory I taught in the winter semester
of 2025-26 at the University of Bonn. The course was intended as a introduction to the
field, and is aimed primarily at students who have some background in algebra, topol-
ogy, and geometry. There are relatively few prerequisites for this course: a thorough
understanding of the fundamentals of group theory (groups, subgroups, normality, group
actions) and basic topology (compactness, separation axioms, metric spaces) and alge-
braic topology (fundamental groups, simplicial complexes) are required, but not much
more is necessary. Some familiarity with covering spaces is also recommended, and ideas
from the theory of manifolds may prove helpful.

We will begin by introducing the reader to the key concepts underpinning the coarse
geometry of groups, before moving to hyperbolic metric spaces and the groups that act
nicely on them. The topic of hyperbolic groups, now becoming classical, is at once rich and
detailed enough that it allows one to touch on many of the salient areas of geometric group
theory at once, while also containing enough basic material that it may be presented as
an accessible primer on the subject as a whole to an advanced undergraduate or graduate
audience. We will develop enough theory to be able to prove many of the most important
fundamental theorems about hyperbolic groups. At the end of the course, we will also see
some groups acting on trees — Bass—Serre theory — without which I felt an introduction
to geometric group theory could not be entirely complete.

I have chosen the route of understanding hyperbolic groups mostly using dynamics,
through the framework of convergence groups. While this does take some time to develop,
it is both an aesthetically appealing and powerful approach, and I feel as though it is
somewhat under-represented in the current literature on the topic. The material on this
is somewhat spread out across a number of sources, and to my knowledge there is not
as of yet a single unified account of the theory. I attempt to rectify this somewhat here,
though the constraints on the nature of the course obviously yield some restrictions. As
such, I hope that even some graduate students and some researchers in the field who are
less familiar with this area may find these notes helpful.

I should write a few words of acknowledgement for the many sources I drew from while
writing these notes. I benefitted greatly from the definitive books of Bridson—Haefliger
[BH99| and Drutu-Kapovich [DK18|, as well as the set of notes by Bowditch [Bow06]
and the survey article of [KB02]. Some material is lifted (and hence translated into
English) from the book of Coornaert—-Delzant—Papadopoulos [CDP90]. Finally, much of
the material on convergence groups was compiled from a sequence of articles by Tukia
[Tuk94; Tuk98; Tuk88|, Bowditch [Bow99; Bow98a], and Freden [Fre95].



CHAPTER 1

Fundamentals

1. Group presentations

We will begin with the notion of a group presentation, which is a fundamental way
to express an abstract (discrete) group. A group presentation is a description of a group
in terms of ‘generators’ and ‘relations’. That is, some free variables and the equations
bounding them. To make this notion precise, we recall the free group.

DEFINITION 1.1 (Free group). Let S be a set. The free group generated by S is
the group F(S) such that for any group G and function f: S — G, there is a unique

homomorphism f: F(S) — G making the following diagram commute

F(S)

T T
\\
A

STG

where S — F(S) is a natural inclusion.

In other words, a free group on a set S is the image of S in Grp under the free
functor Set — Grp.

EXERCISE 1.2. Show that F'(S) and F(T) are isomorphic if and only if S and T are
in bijection. It follows that a free group is uniquely determined up to isomorphism by
the cardinality of its generating set.

DEFINITION 1.3 (Rank of a free group). Let S be a set. The rank of F(S) is the
cardinality |S| of S.

It is often useful to have a practical model of the free group that one can refer to,
when it is unwieldy or otherwise not possible to use the definition above in terms of a
universal property.

DEFINITION 1.4. Let S be a set. Denote by S™! the set in bijection with S, whose
elements are the symbols s~! for each s € S: these are the formal inverses of elements
of S. We identify this bijection -7': S — S~! with its inverse, so that we may write
(s71)7! =s. A word in S is an ordered finite sequence of elements in SUS™!; the empty
word is the empty sequence. The length ¢(w) of a word w is the number of terms in
the sequence. A word is called reduced if it contains no consecutive terms of the form
ss~! for s € SUS™L. Define the equivalence relation = F(s) on words as the symmetric
and transitive closure of deleting such an element-inverse pair. Note that any word is
equivalent to a reduced word.
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The free group F(S) on S is the set of words in S up to the above equivalence
relation, with the operation of concatenation of (class representatives) of words. It is
straightforward to check that this is a well-defined operation. The identity of this group
is the empty word.

It will usually not cause confusion for us to identify words in S with their equivalence
classes up to reduction, so we will interchangeable refer to words as ‘being’ elements of
F(S) as well as ‘representing’ elements of F'(S). Note that every group is the quotient of
a free group: indeed, if G is a group, then applying the forgetful functor it can be viewed
as a set, and the universal property implies there is a unique homomorphism F(G) — G
acting as ‘evaluation’ of words in G.

DEFINITION 1.5 (Group presentation). Let S be a set, and R a set of words in S.
Let G be the quotient group F'(S)/{R)) and write (S| R) for the presentation of G with
generators S and relators R. If both S and R are finite sets, then the presentation is
called finite. If a word w in S represents an element g € G, we may write w =g g.

We say that G is finitely generated if it admits a presentation (S| R) with S finite.
Equivalently, it is the quotient of a finite rank free group. Further, G is finitely presented
if it admits a finite presentation.

EXERCISE 1.6. Show that the group of invertible n x n integer matrices GL,(Z) is
finitely generated. Show that the rational numbers @Q do not form a finitely generated
group under addition.

EXERCISE 1.7. Show that the properties of being finitely generated and being finitely
presented are stable under extensions.

When we have explicit sets to work with, we often write a group presentation with
the elements of S and R, omitting the set brackets.

EXAMPLE 1.8.
(1) The free group on S has a presentation with generating set S and no relators;
(2) the free abelian group on S has a presentation with generators S and commu-
tators [s, t] as relators for each s,t € S,
(3) the fundamental group of the genus g surface ¥ has presentation

<CL1, ce ,ag,bl, ce ,bg ‘ [al,bl] ce [ag,bg]>.

To see this, observe that ¥ can be obtained as the quotient space of a 4g-gon.

One should convince oneself first about the case that 3 the torus g = 1, then

observe that higher genus surfaces are obtained by taking connected sums of

tori and lower genus surfaces. The 4g-gon can be cut into g hexagons, each of

which are tori with a single boundary component under the edge identifications;
(4) a cyclic group of order n has presentation {(a|a™).

Of course, a presentation does not determine a group uniquely. Indeed, though
some information can be gleaned from a presentation in specific circumstances, group
presentations in general do not encode readily accessible information about a group.
However, if we know which group we are working with to start off with, two of its
presentations are not too unrelated (at least, when it comes to finite presentations).
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DEFINITION 1.9 (Tietze transformations). Let P = (S| R) be a presentation for a
group G. The following four operations are Tietze transformations, taking the presenta-
tion P to a presentation P’:

(i) Let r € (R)) be a word in F(S). Define P’ = (S|RU {r}).
(ii) Suppose r € R is such that r € (R — {r})). Define P’ = (S| R — {r}).
(iii) Let ¢t be an element in F(S) and w a word in S representing ¢. Define P’ =
(SU{t} RU{t7tw}).
(iv) Suppose s € S is such that s can be written as a word w in S’ C S, and
stw € R. Define P’ = (S — {s} | R — {s71w}).
These operations correspond to adding a superfluous relator, deleting a superfluous re-
lator, adding a superfluous generator, and deleting a superfluous generator respectively.

It is a tedious, though possibly instructive, exercise to verify that each of the Tietze
transformations preserve the isomorphism type of the presented group G. We now have
the important observation about finite presentations.

LEMMA 1.10 (Tietze’s theorem). Let P and P’ be two finite presentations of a given
group G. Then there exist a finite sequence of Tietze transformations that transform P
into P’.

PROOF. The idea is that one can arrive at a common presentation for both P and

P’ by adding in all of the generators and then relators from both presentations in one at
a time. We leave the details to the reader. O

2. Groups and their actions

Recall that an action of a group G on a set X is a function -: G x X — X satisfying
e 1.z =z forall x € X; and
e g-(h-z)=(gh) -xforall g,h € Gand z € X.
Let us introduce some terminology for group actions.

DEFINITION 2.1 (Group actions). Let X be a topological space equipped with a
G-action -: G x X — X. We say the action is:
e cocompact if the quotient space X/G is compact, with the quotient topology;
e properly discontinuous if for any compact K C X, the set

{9eGlgKk N K #0}
is finite;
and when X is a metric space, with metric d:
o by isometries if for any g € G and z,y € X, we have

d(g-z,9-y) =d(z,y)
e geometric if it is by isometries, cocompact, and properly discontinuous.

It is often useful to think about an action of a group G on a set X as a homomorphism
G — Aut(X) from the group to the automorphisms of the set. We say automorphisms
here, rather than permutations, for X is often endowed with some structure, and the
action is required to preserve that structure. For instance, if X is a topological space, we
want the group elements to act by homeomorphisms, when X is a metric space, usually
by isometries, and so on.
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We now introduce the most basic geometric-combinatorial object for our study: Cay-
ley graphs of groups. For us, a graph I' will be a set of vertices VI and a set of edges ET,
which comes equipped with a pair of functions ¢, 7: ET' — VT (denoting the initial and
terminal endpoints of an edge). We will say that two vertices v,w € VT are connected
by an edge e € ET" with «(e) = v and 7(e) = w, and we write v ~ w in this case.

The geometric realisation of a graph I' is a simplicial complex whose 0-skeleton is
VT, and whose 1-simplices are the edges ET, with attaching maps determined by the
incidence functions ¢ and 7. We equip this complex with the metric induced by giving
each edge unit length. Throughout, we will identify a graph with its geometric realisation.

DEFINITION 2.2 (Cayley graph). Let G be a group with generating set S. The Cayley
graph of G with respect to S is the graph I'(G, S) whose vertex set is G, and with an
edge g ~ h if there is s € S with gs = h.

Note that G acts (by left multiplication) transitively on the vertex set of I'(G, S),
and with |S|-many orbits of edges. It is straightforward to see that this is an isometric
action. When the group G is finitely generated and S is a finite set, there are finitely
many edge orbits, and so the action is also properly discontinuous and cocompact. This
gives us our archetypal model for a geometric action. We will see later that essentially
every geometric action of a finitely generated group is like one on a Cayley graph.

DEFINITION 2.3 (Word metric). Let G be a group and S be a generating set. The
word metric on G with respect to S is the metric dg defined as

ds(g,h) = min{l(w) |w =g g~ *h}.
We will write |g|g = dg(1, g) for the length of g with respect to S.

The word metric on a group coincides with the restriction of the edge-path metric on
the associated Cayley graph to its vertex set, and the length of an element with respect
to a generating set is exactly the length of the shortest word representing that element
in that generating set.

EXAMPLE 2.4. The free abelian group Z" = (a,...,an |[ai,a;] = 1) acts geometri-
cally on the Euclidean space R™ of dimension n, by the translations

ai - (x1,.. . xp) = (1,2 + 1,000 xy).

This is, by construction, an action by isometries, and one should check that the action
is properly discontinuous. The quotient space R"™/Z"™ = T™ is the Euclidean n-torus, the
product of n copies of the circle S'. One can view this as the covering space action of
m1(T™) = Z™ on its universal cover R".

Taking S = {a1,...,a,} as the standard generating set as in the presentation above.
The Cayley graph I' = T'(Z",S) embeds as the integer grid in R™, and the action of
Z" above restricts to the standard action on I' by left multiplication. Note that this
embedding of I' into R is not quite isometric: one can show it is distance non-increasing,
and decreases distances by at most a factor of \/n.

EXAMPLE 2.5. Let S be a set, and F' = F(S) the free group on S. The Cayley graph
['(F,S) is the regular tree with valence 2|S|: each vertex has an outgoing edge labelled
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FIGURE 1. The Cayley graphs I'(Z2, {(1,0), }) and I'(F(a,b),{a,b}).

s and an incoming edge with labelled s~!. Note that F is the fundamental group of the
wedge of |S| circles, whose universal cover is I'(F, S).

EXAMPLE 2.6 (Cyclic group). An infinite cyclic group (a) = Z is a free group, and
has an obvious one-generator presentation with no relators. As a metric space, the Cayley
graph with respect to this generating set is, of course, just the line R. Consider, however,
the generating set S = {a?, a3} for (a). The Cayley graph I' = I'(Z, S) is definitely not
a line: it has many loops for instance: see Figure 2.

However, the map I' — R defined by taking the identity on VI' = Z and mapping
each edge to its numerically lesser endpoint distorts distances additively by at most 3.
In this way, I' is ‘coarsely’ isometric to the real line.

FIGURE 2. The Cayley graph of Z with respect to the set {2, 3}.

EXERCISE 2.7. Draw a portion of the Cayley graph for the group with presentation
(a,t|tat™ = a?).

This is an example of a Baumslag-Solitar group: these form a two-parameter family of
groups, indexed by integers m,n € Z, with a relator ta™t~! = a”.

3. Quasi-isometries

The examples of the previous section serve to illustrate a key point: though the exact
metric on two spaces with a geometric G-action may differ on a local level, the large-scale
‘rough’ geometry of the spaces remains the same. The takeaway is that, for our purposes,
isometry is not the correct notion of morphism, motivating the following.
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DEFINITION 3.1 (Quasi-isometry). Let X and Y be metric spaces, A > 1, and ¢ > 0.
A map f: X =Y is a (A ¢)-quasi-isometric embedding
1
Lidx (e a!) - e < dy(7(@), f(&)) < Adx(z,a!) + ¢
for all z,2' € X.
Moreover, f is K-coarsely surjective if for every y € Y, there is x € X with
dy (f(x),y). A (XA c)-quasi-isometry is a (A, c¢)-quasi-isometric embedding that is K-
coarsely surjective for some K > 0.

As with many definitions we will give, we will omit the constants when they are not
important to the discussion. That is, for example, we say a map f is simply a quasi-
isometry if there are some A > 1 and ¢ > 0 such that it is a (A, ¢)-quasi-isometry. It is
important to note that a quasi-isometry need not be continuous!

EXERCISE 3.2. Show that if f: X — Y is a quasi-isometry, it has a quasi-inverse:
a quasi-isometry ¢g: Y — X such that go f and f o g are a finite distance from the
identity on X and Y respectively (with respect to the supremal metric on functions), in
such a way that all the the constants involved depend only on those of f (i.e. they are
independent of the particular function).

Show that quasi-isometry is an equivalence relation on metric spaces.

\

\

—

Ficure 3. Collapsing a maximal forest of paths is a quasi-isometry which
increases degree.

ExXAMPLE 3.3. Given n > 2, write T;, for the n-regular tree. For any m,n > 3,
the trees T;, and T,, are quasi-isometric. Transitivity of quasi-isometry means that it
suffices to show that any n-regular tree is quasi-isometric to T5. The key fact is that if
one collapses an edge of T3, then one combines two vertices and increases the valence by
one: see Figure 3.

Thus, let us take a spanning forest ¥ of T3 by disjoint paths of length n—3 (note: one
needs the axiom of countable choice for this), and consider the map f: T3 — T3/ =T,
obtained by collapsing each connected component of ¥ to a single point. The map f is
of course distance non-increasing. Moreover, at least every (n —2)™ edge of an arc in T3
must lie outside of T, so that
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for any x,y € T3. Finally, our map is surjective, so it is a quasi-isometry.

EXAMPLE 3.4. We will give a sketch that the real line R and the ray [0, c0) are not
quasi-isometric, and leave it to the reader to assemble the details. Indeed, suppose that
¢: R — [0,00) is a quasi-isometric embedding, and suppose for simplicity that ¢(0) = 0.
Ast — oo, we must have p(t) — oo and p(—t) — oo, since ¢ coarsely preserves distances.
Pick some very large x € [0,00). There must then be some correspondingly very large
s,t > 0 so that ¢(—s) and ¢(t) lie a uniformly bounded distance from z. Using the fact
that ¢ is a quasi-isometric embedding, ¢t — (—s) = t + s is uniformly bounded. Provided
one picks z large enough, then ¢t + s may take arbitrarily large values: a contradiction.

EXERCISE 3.5.

(1) Show that the half-plane R% = {(a,b) € R?|b > 0} is not quasi-isometric to
the whole plane R2.

(2) Show that R™ is not quasi-isometric to T, for any m,n > 2.

(3) Show that if R™ is quasi-isometric to R™, then m = n. (Hint: Consider the
volume growth rate of balls in R™. That is, the growth rate of the function
vol,, : 7 — vol(Bgn (0, 7)), which is polynomial in degree n. Show that this rate
is — up to a suitable equivalence relation — preserved under quasi-isometries.)

One of the immediate upshots of this notion is that the quasi-isometry type of the
Cayley graph of a finitely generated group is an invariant of the group.

LEMMA 3.6. Let S and T be finite generating sets for group G. Then (G,ds) and
(G,dr) are quasi-isometric.

PROOF. It is enough to show that (G, dg) is quasi-isometric to (G, dgyur). The result
then follows by transitivity of quasi-isometry. We may thus suppose without loss of
generality that S C T, s0 S = {s1,...,s,} and T'= S U{t1,...,tn}, with m > 1.

The identity map is our candidate for a quasi-isometry. Of course, this map is
surjective. It is immediate that the identity is distance non-increasing: a word in S
representing an element of G must be at least as long as one in T. As S is a generating
set, each of the elements t; can be expressed as a word w; in S. Let A = max{l(w;)|i =
1,...,m} < oo be the maximum over the lengths of these words.

Take any g,h € G, and let w be a word of minimal length in T representing g~ !h.
We may replace any instance of ¢; in w with the word w; to obtain a word w’ in S
representing g~ 'h. Since we are, at worst, replacing each letter with \ letters, we have

ds(g,h) < L(w') < M(w) = Adr(g,h).
It follows that the identity map is a (A, 0)-quasi-isometry. O

In light of the above, we will say from now on that a finitely generated group G is
quasi-isometric to a space X if, when equipped with a word metric with respect to a
finite generating set, it is quasi-isometric to X. The above lemma shows that this notion
is well-defined up to change of finite generating set.

EXERCISE 3.7. Think about what the Cayley graph of a group looks like with respect
to a generating set that gives a finite presentation. Come up with a graph-theoretic
characterisation of a group being finitely presentable, and use this to show that finite
presentability is a quasi-isometry invariant.
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DEFINITION 3.8 (Quasi-geodesics). Let A > 1 and ¢ > 0. A (A, ¢)-quasi-geodesic in X
is a (A, ¢)-quasi-isometric embedding of a closed interval I C R into X. The endpoints of
a quasi-geodesic are the images of the endpoints of the interval, if the interval is bounded.

We call a (1,0)-quasi-geodesic a geodesic. A space X is called a geodesic space if
every pair of points can be joined by a geodesic. Given two points x,y € X we will often
denote by [z, y] a choice of geodesic whose endpoints are x and y.

REMARK 3.9. A (), 0)-quasi-geodesic is necessarily continuous. In particular, a geo-
desic is continuous.

EXAMPLE 3.10. The plane R? is a geodesic space, but R? — {0} is not.

Quasi-geodesics need not be continuous in general. The following lemma allows us
to restrict our attention to continuous quasi-geodesics in many scenarios, without losing
very much. We only sketch a very rough idea here and leave the details to the reader,
since it is a rather dull technical exercise.

LEMMA 3.11 (|[BH99, Lemma III.H.1.11]). Let X be a geodesic space, A > 1, and
¢ > 0. There is a constant ¢ = (X, ¢) > 0 such that the following is true.

Let v: I — X be a (X, c¢)-quasi-geodesic in X. Then there is a continuous (X, c)-
quasi-geodesic v': J — X with the same endpoints as vy, such that the images of v and
~" are a Hausdorff distance of at most ¢’ from one another.

PROOF. Partition I along its integer points, and construct 7 by concatenating
geodesics joining the images of this partition in X. As 7 is (), ¢)-quasi-geodesic, the
length of each such segment is at most A+ ¢. The claim holds choosing ¢/ > 2(A+¢). O

Recall that the Heine-Borel theorem tells us that closed and bounded subsets of
finite dimensional Euclidean spaces are compact. Many other spaces we will consider
have this important property, such as locally finite graphs. We view this as a sort of
finiteness property; non-proper spaces include things such as Banach spaces of infinite
dimension and graphs with infinite valence at a vertex. We will give a name to metric
spaces satisfying this property more generally.

DEFINITION 3.12 (Proper space). A metric space X is called proper if each of its
closed and bounded sets are compact.

EXERCISE 3.13. Let X be a proper metric space, and suppose G < Isom(X) is a
subgroup of isometries. Show that the action of G on X is properly discontinuous if and
only if G is a discrete subgroup of Isom(X), equipped with the compact-open topology.

EXERCISE 3.14. A length space is a metric space where any two points can be joined
by a rectifiable path, and the distance between two points coincides with the infimum
of the lengths of all such paths. Prove the Hopf-Rinow theorem: every complete and
locally compact length space is proper and geodesic.

Perhaps the most important observation we will make in this chapter is the following,
which is sometimes referred to as the fundamental lemma of geometric group theory.
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PROPOSITION 3.15 (Milnor-Schwarz Lemma). Let X be a proper geodesic metric
space, and suppose that G acts on X cocompactly by isometries. Then there is a gener-
ating set S of G such that the orbit map

G—X,g—9- -z

is a quasi-isometry for any x € X. Moreover, if the action is properly discontinuous,
then S is finite.

PRrROOF. Let x € X be an arbitrary point. As X is proper, it is locally compact.
Therefore cocompactness of the action is equivalent to the existence of compact B C X
with x € B such that G- B = X. As B is compact, it is a bounded set: let R be the
diameter of B and define

S={seG|dx(z,s-x) <3R} — {1},

We first show that S is a generating set for G. Let g € G be an element and write
d=dx(xz,g-z). As X is a geodesic space, there is a geodesic v: [0,d] — X between x
and g-x. We may choose a partition 0 =ty < --- < t,, = d of [0,d] such that t;—t;—1 = R
foreachi=1,...,n—1and t, —t,_1 < R. It follows that

1
(3.1) n < de(a},g-x)—i—l.
As G- B = X, there is g; € G such that ~(¢;) € g; B for each ¢ = 0,...,n. We may take
go=1and g, =g.

FIGURE 4. Illustration of the proof.

For each i =1,...,n,, we have

dx(gi-1-2,9i-®) <dx(gi—1-2,v(tiz1)) + dx (v(tic1),y(t:)) +dx (v(t:), i - )
<R+R+R=3R

so that dx («, gl-_jlgi-:r) < 3R. It follows by definition that g;llgi € Sforeachi=1,...,n.
By a finite induction it follows that g = g, € (S). As g was arbitrary, S generates G.
At this point we remark that since X is proper, then the ball of radius 3R about x
is compact. Hence, if the action of G is properly discontinuous, then the set S is finite.
We now show that the map in the statement is a quasi-isometry. Since the map is
G-equivariant, we need only bound dx (z, g-z) from above and below by linear functions
of dg(1,g). From the above, g can be written as a word of length n in S, namely

9=91(91"92)(9593) - - (9n " 29n-1) (92 19n)-
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Hence dg(1,9) < n. By (3.1), this implies dg(1,g) < %dx(x,g -x) + 1. Moreover, if
W= 8]...8, is a word of minimal length representing g. Then

dx(z,g9-r) <dx(z,s12) +---+dx(s1...50-1- 2,9 T)

< zn:d(a:, S+ T)
i=1

< 3Rn = 3Rdg(1,9)

where the first inequality holds by the triangle inequality, the second by the fact G acts
by isometries, and the third by the definition of S. O

Recall that two groups are commensurate if they contain isomorphic subgroups of
finite index. We have a basic consequence of the Milnor-Schwarz lemma

LEMMA 3.16. Finitely generated commensurate groups are quasi-isometric.

PROOF. It is enough to show that a group is quasi-isometric to any of its finite
index subgroups. Let H <y G and let S be a finite generating set for G. As G acts
properly discontinuously by isometries on I'(G, .S), so does H. Moreover, every point of
I'(G,S) is at most [G : H] from H, so the action is cocompact. Hence by the Milnor—
Schwarz lemma, H has a finite generating set 7' for which I'(H,T") is quasi-isometric to
I'(G,S). O

REMARK 3.17. Albert Schwarz, whose name appears as the second component of
above named result, is a Russian-born mathematician who, after beginning in topology,
spent a majority of his career working on mathematical physics. The name Schwarz is a
German-Jewish name, and was transliterated to Russian as IlIsapi. Many sources still
cite this result as the ‘Svarc-Milnor’ or ‘Milnor-Svarc’ lemma, owing to a curious decision
by the AMS in the 1950s to re-transliterate IITsapr as Svarc. Amusingly, Schwarz later
moved to the United States, where he goes by the original spelling of his family name.

REMARK 3.18. The main initial motivation for considering quasi-isometries comes
from differential geometry; they fundamentally clarify the relationship between continu-
ous structures and certain discrete objects approximating them. In particular, Schwarz
and Milnor were interested in relating volume growth in universal covers of Riemannian
manifolds to some notion of growth in their fundamental groups. That these rates are the
same for compact manifolds, up to a suitable equivalence relation, is a straightforward
consequence of the Milnor-Schwarz lemma.

We conclude this section with the statement of a major theorem of Gromov. The
proof is well beyond the scope of this course, but it is a strong indicator that one can
recover a remarkable amount of algebraic information from asymptotic geometric data.
We will not give a precise definition here, but the growth rate of a finitely group is the
rate of growth of the function r — |B(1,r)|, where the ball is taken the group with
respect to some word metric for a finite generating set. It is not difficult to see that this
is a quasi-isometry invariant.

THEOREM 3.19. Let G be a finitely generated group. Then G has a finite index
nilpotent subgroup if and only if it has polynomial growth.



CHAPTER 2

Negative curvature in spaces

There are many notions of curvature in spaces. To do geometric group theory, we
are interested in formulating a notion that applies to metric spaces in general. This
approach is informed by more classical notions of negative curvature in manifolds. Given
a Riemannian manifold, the curvature may be formalised using sectional curvature: given
two linearly independent vectors in a tangent space to a point, one calculates the Gaussian
curvature of the surface with tangent plane equal to the span of these vectors.

Already, the topology of complete manifolds with everywhere non-positive sectional
curvature is tied to group theory — the Cartan-Hadamard theorem tells us that the
universal cover of such a manifold of dimension n is homeomorphic to R™. It follows
that these manifolds are aspherical, and so their algebraic topology is largely determined
by their fundamental groups. The most basic examples of manifolds of non-positive
curvature are those with constant negative curvature: these are hyperbolic manifolds.
The study of hyperbolic manifolds is incredibly vast and incredibly rich; we here give a
brief overview of the basics in low dimensions, to give some intuition and motivation for
the more abstract, metric, and combinatorial notions that will be the focus of most of
this course.

1. Hyperbolic geometry

1.1. History. Hyperbolic geometry is the geometry of space with a constant neg-
ative curvature, and can be thought about in contrast to the geometry of space with
zero curvature (i.e. Euclidean geometry) and constant positive curvature (i.e. spherical
geometry). The development of hyperbolic geometry has a storied history, and was born
out of an almost two-millennia-long attempt to reconcile a difficult tension in Euclid’s
classical axiomatisation of geometry.

The core point of contention was the nature of Euclid’s fifth axiom, called the ‘parallel
postulate’. Contrary to the other four axioms (e.g. there exists a straight line between any
two points, all right angles are equal), the parallel postulate is much more complicated,
stating ‘if two lines meet a third line, then the two lines will meet on the side of the third
line for which the angle sum is less than the sum of two right angles’.

Coupled with the fact that more than half of the propositions in the first book of the
Elements do not invoke the parallel postulate, it was widely believed that it should follow
from the other axioms. Out of many attempts to prove this, it was gradually realised
that the rejection of this axiom actually entails a consistent and robust geometry, often
called ‘absolute geometry’, and that the truth of the parallel postulate in a particular
model of geometry is independent of the other axioms. There are in fact only two models
of absolute geometry, and they are exactly Euclidean and hyperbolic geometry, with the

15
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latter obtained by taking a negation of the parallel postulate instead of the postulate itself
(and one must make some additional modifications to accommodate spherical geometry).

1.2. The Poincaré ball. We will write H" for hyperbolic space of dimension n.
This is, the unique simply connected Riemannian manifold of constant negative curvature
—1. As a model for this space, we will take the open unit ball in Euclidean space R",
equipped with the metric

4| dx|?

(1= [x[1)*"

This model is called the Poincaré ball model for hyperbolic space. There is no isometric
embedding of H" into Euclidean space of any dimension (unlike, say, a sphere with its
intrinsic metric), so any such model must be far from distance-preserving. In fact, this
model is conformal — it preserves angles — but it is easy to see that distances between
points are heavily distorted from their Euclidean counterparts. Other common models
are the hyperboloid model and the half space model; each comes with its own advantages
and drawbacks.

ds® =

FIGURE 1. The Poincaré disc with a collection of geodesics

Hyperbolic space has a natural bordification JH", which we call the space at infinity
or simply the boundary. From the ball model, this boundary is clear to see as the
boundary sphere OH" = S"~!. The geodesics in this space are given by diametrical
lines and arcs of circles that are perpendicular to the boundary JH". The group of
isometries of H" in this model is the Lie group SO(n, 1) of special orthogonal matrices
of signature (n,1). The space H" is homogenous and isotropic — its group of isometries
acts transitively on the space, and transitively on the tangent space at any given point.

EXERCISE 1.1. Verify using the path integral formula
2|9/ (t
= [ 2O
ter 1= (@)
for a path v: I — H", that the geodesics in H" are as described above.

Hyperbolic geometry has some interesting features that distinguish it from Euclidean
geometry. The easiest to see of these is the non-parallelism of geodesics described in the
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previous section: this can be seen by the description of geodesics as above. In fact,
geodesics will always diverge from each other rather quickly, in one direction or another.
There is also the phenomenon of ultra-parallelism, where geodesics can share one endpoint
in OH". Such geodesics will stay a bounded distance from one another as they approach
one point at infinity, and diverge in the other direction.

A second key feature of hyperbolic geometry is the uniform thinness of polyhedra. In
Euclidean geometry, due to the existence of homothety, there are triangles of arbitrarily
large area and arbitrarily large incircles. In hyperbolic geometry, this behaviour is for-
bidden. Let M be a compact Riemannian surface and recall the Gauss-Bonnet formula
from differential geometry:

// KdA+/ kqds = 2mx (M),
M oM

where K is the Gaussian curvature of M and k, is the geodesic curvature of M. With
a smoothing argument, one can apply this formula to calculate the area of triangles.
For an isometrically embedded triangle 7" in hyperbolic space, K = —1, x(7') = 1, and
contribution of the integral involving the boundary corresponds exactly to the sum of
the external angles. Hence, after rearranging,

a'rea(T) =TT (Oé + /8 + 7)7

where a, 3, and ~ are the internal angles of T'. The area of a hyperbolic triangle is thus
always bounded from above by 7. It follows, for instance, that there is a uniform bound
on the radius of an incircle in a hyperbolic triangle; they are all thin.

EXERCISE 1.2. Show explicitly that H?, and thus H”, has triangles that are uniformly
thin in the above sense, with the constant %log 3 as the bound on radii. (Hint: the worst

you could do is an ideal triangle, one whose vertices lie on the boundary circle of H?.)

Another clear consequence of the above formula is the fact that the angle sum in a
hyperbolic triangle is always less than 7, contrasting the Euclidean case, where it is equal
to m. In fact, the angle sum decreases proportionally to the area, with ideal triangles
having the largest area and angle sum of zero.

A final key difference between Euclidean and hyperbolic geometry that we highlight
here concerns balls. In Euclidean space of dimension n, a ball of radius r has volume
proportional to r™. Already, however, the area of a disc in the hyperbolic plane has
grows exponentially with respect to the radius. In fact, the same is true even of the
circumference of a circle in hyperbolic space. One may verify this by means of computing
some not-too-complicated integrals. As a result, one sees that two different (unit-speed)
geodesic rays in H" with a shared origin ‘diverge’ exponentially quickly, in the sense that
one must travel exponentially long distances with respect to a radius to get from a point
on one to the other, outside a ball around the origin with that radius.

1.3. Surfaces and tessellations. In general, it is a fact that every hyperbolic man-
ifold arises as the quotient H" /T of hyperbolic space by a torsion-free discrete subgroup
of isometries I' < Isom(H"™). This is easy to see if one assumes that H" is the unique
simply connected Riemannian manifold of constant curvature —1: each hyperbolic n-
manifold M has universal cover M = H" (after possibly rescaling the metric) on which
I' = m (M) acts by isometries. That I' is torsion-free corresponds to the fact that the
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action of 71 (M) is free and M = H" /T has no singular points. This is a little abstract,
so let us restrict our attention now to the two-dimensional case of the hyperbolic plane,
where such a realisation can be explicitly computed and visualised.

Our construction will involve understanding polygons and tessellations of the hyper-
bolic plane. We sketch a proof of the following:

LEMMA 1.3. Let n,m € N be natural numbers with L + % < Y. Then there is a

n 2°

tessellation of H? by reqular n-gons, with m different n-gons meeting at every vertex.

PROOF. Very close to the origin in the Poincaré disc, the metric closely resembles
that of Euclidean space. That is, there are regular n-gons centred on the origin, whose
interior angle sum is arbitrarily close to %(n — 1), the corresponding angle sum in
Euclidean space. Following the above discussion on area, moving the vertices outward
from the origin decreases this angle sum monotonically, and the sum approaches zero as
the n-gon tends to an ideal n-gon. By a continuity argument, there are regular hyperbolic
n-gons each of whose interior angles is equal to a given 0 < 8 < %(1 — %)7’[‘

If 6 in the above is taken of the form %r for some natural number m, then we can
obtain a tessellation of the hyperbolic plane by regular polygons, by reflecting such a

polygon along its edges. The condition that # = % < %(1 - %)ﬂ' can be rearranged
exactly into the hypothesis in the lemma, so it holds by assumption. O

Using this, we may realise hyperbolic manifold structures on every surface that is not
the torus or the sphere.

PROPOSITION 1.4. For each g > 2, the surface ¥4 of genus g admits a Riemannian
metric of constant negative sectional curvature. More precisely, there is a discrete torsion-
free subgroup T’ < Isom(H?) such that 4 is isometric to H?/T.

PROOF. Recall as in Example 1.8(3) that ¥, may be realised as a quotient of a
(regular) 4g-gon P. By Lemma 1.3, there is a tessellation of H? by copies of P. Now
Isom(H?) acts transitively on (oriented) line segments of the same length, so that there
are isometries realising each of the side identifications appearing in the above quotient.
Let T' be the subgroup of Isom(H?) generated by these finitely many isometries.

As any element of I preserves the given tessellation of H?, it is straightforward to
check that the action is properly discontinuous. Since H? is a proper metric space, this
means that T is a discrete subgroup of Isom(H?). Finally, observe that I fixes no points
of H?. The existence of torsion in I' would imply the existence of a fixed point, so I' must
be torsion-free. O

The above is essentially a simple case of a more general theorem of Poincaré, which
constructs discrete subgroups of Isom(H?) whose quotient realises any (orbi)surface with
genus g and cone points of order my,...,m,, provided

n
1
29—2+Z(1_E> > 0.
i=1 v

The quantity on the left is often called the signature of the surface. One can prove
Poincaré’s polygon theorem similarly to the above, but with a more involved construction
of fundamental domain to account for the cone points.

It follows immediately from the above, together with the Milnor—Schwarz Lemma:
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COROLLARY 1.5. If ¥ is a surface of genus g > 2, then m ¥ is quasi-isometric to H?.

Discrete subgroups of Isom(H?) are often called Fuchsian groups, and discrete sub-
groups of Isom(H?3) — and sometimes those of Isom(H") — are called Kleinian.

1.4. The boundary. Any element of Isom(H") has an induced action by home-
omorphisms on the boundary O0H™ of hyperbolic space, so there is a well-defined ho-
momorphism Isom(H") — Homeo(S" 1) for each n € N. As such, we can attempt to
retrieve information about subgroups of isometries of H"™ by analysing their action on
the boundary. For individual isometries, this turns out to be very doable.

PROPOSITION 1.6. Let g € Isom(H") be an isometry. Then either
(i) g fizes a point in H";

(ii) g fizes no points in H™ and exactly one point in OH"; or

(iii) g fizes no points in H™ and exactly two points in OH".

We call the isometries elliptic, parabolic, and loxodromic respectively in the above
cases. In each of the above cases, the geometry of the isometry g can be effectively
described. If g is elliptic, then it is a rotation around its fixed point in H", since the
stabiliser of any point in H" is the Lie group O(n). If g is parabolic, then it fixes any
horosphere centred around its fixed point in JH". A horosphere is the limit of a sequence
of spheres of increasing radii with a shared point of tangency, and its centre is the point
in the boundary that meets the diameter of these spheres. A horosphere is a copy of
Euclidean space R, embedded in H" with exponential distortion of the metric. Lastly,
a loxodromic isometry fixes a bi-infinite geodesic joining its two fixed points in OH", and
acts as a translation when restricted to this axis.

FIGURE 2. From left to right: elliptic, parabolic, and loxodromic isome-
tries of the hyperbolic plane, with their flows indicated with dashed lines.
The fixed points are marked in orange.

For more general subgroups of isometries than cyclic ones, the situation is natu-
rally more complicated. Here, the action of the subgroup on a particular subset of the
boundary known as its limit set becomes important.

DEFINITION 1.7. Let G < Isom(H"™). The limit set of G is the subset AG C OH" of
accumulation points of G-orbits in H".
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EXERCISE 1.8. Show that AG is the smallest G-invariant closed subset of OH", and
that AG is a perfect compactum unless G has a finite index cyclic subgroup.

The study of limit sets and their geometric properties is of much interest. They
are in general fractal subsets of the boundary. Various facts about a subgroup can be
determined from its limit set; we do not pursue these here, but will return to the topic
when discussing boundaries of abstract hyperbolic groups later.

2. Hyperbolic metric spaces

We now introduce a notion of negative curvature for metric spaces. Our definition
will be modelled on a key property of the classical hyperbolic spaces of the previous
section: it will state that every geodesic triangle is uniformly thin. That is, triangles in
these spaces will look somewhat like tripods. Triangles are the most basic shapes in a
geodesic space, and so, as we will see, this assumption has some strong consequences for
the geometry of these spaces and the groups that act on them.

We will need some preliminary definitions.

DEFINITION 2.1 (Gromov product). Let (X, d) be a metric space, and z,y,z € X be
points. The Gromov product of x and y with respect to z is

(. 9): = 5 (4 2) + 4w, 2) — d(z.y) ).

One can think of the Gromov product (z,y), as an abstracted notion of the ‘angle’
spanned by x and y with respect to z. Indeed, in Euclidean space, this Gromov product
is exactly the distance of the point z to the points on [z,z] and [y, z] that touch the
incircle of the triangle with vertices z,y, and z — up to homothety, this is determined
by the angle these two lines make.

DEFINITION 2.2 (Thin triangles). Let A be a geodesic triangle with vertices z, y, and
z in a metric space X, and let 6 > 0. Call T the tripod with leg lengths (z,y)., (z, )y,
and (y, z),. There is a unique map ¢: A — Ta such that z,y, and z map to the extremal
vertices of Ta and ¢ restricts to an isometry on each side of A. We say A is §-thin if
diam p=({t}) < J for all t € Ta.

FIGURE 3. An illustration of a d-thin triangle A and map ¢: A — Ta.
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DEFINITION 2.3 (Hyperbolic metric space). Let X be a geodesic metric space. If
there is § > 0 such that every geodesic triangle in X is §-thin, we say that X is a J-
hyperbolic metric space. We simply call X a hyperbolic metric space if there is some § > 0
such that it is a é-hyperbolic metric space.

EXERCISE 2.4. Show that a geodesic space is O-hyperbolic if and only if it is an
R-tree: a space in which every pair of points is connected by a unique arc.

EXAMPLE 2.5. We saw in the previous section that H" is d-hyperbolic with hyper-
bolicity constant § = %log 3.

EXAMPLE 2.6. The plane R? is not a hyperbolic metric space, as for any § > 0, any
equilateral triangle with side lengths greater than 24 is not d-thin.

There are many alternative formulations of the thin triangles condition. One that is
very commonly used and can be useful is the slim triangles formulation.

DEFINITION 2.7. Let A be a geodesic triangle in metric space X, and let § > 0. We
say that A is §-slim if each side of A is contained in a §-neighbourhood of the union of
the other two sides.

Of course, using slim triangles instead of thin triangles gives an identical characteri-
sation of hyperbolic metric spaces, up to a small change in the constant in the definitions.

EXERCISE 2.8. Show that every é-thin triangle is d-slim, and that every d-slim triangle
is also 46-thin.

EXERCISE 2.9. Show that a if geodesic space X is d-hyperbolic then it satisfies the
four-point condition: for all x,y, z,w € X, we have

d(z,y) + d(z,w) < max{d(zx, z) + d(y, w),d(x,w) + d(y, z) } + 26.

Further, show that if X satisfies the four-point condition for some § > 0, there is ¢’ > 0
such that X is §’-hyperbolic.

REMARK 2.10. The four-point condition above can of course be formulated for any
metric space, without any assumption on whether or not geodesics exist. This is fre-
quently useful, as it allows us to talk about hyperbolicity of discrete metric spaces, such
as groups equipped with a word metric.

An important feature of hyperbolic metric spaces is the ‘stability’ of quasi-geodesics:
all quasi-geodesics actually follow geodesics between their endpoints uniformly closely.
This fact is usually referred to as the Morse Lemma. Note that this feature is particular
to hyperbolic metric spaces; the following example shows that it can dramatically fail
outside of this setting.

EXAMPLE 2.11. Consider the Cayley graph of Z? with the standard generating set.
Then take the concatenation of three geodesics of length n, one vertical geodesic going
up, one horizontal going right, and one vertical going down, is a (3, 0)-quasi-geodesic.
This path contains points that are a distance of n from the unique geodesic joining its
endpoints (which is a horizontal path of length n), and we may take n to be arbitrarily
large. See Figure 4 for an illustration.
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| L

FIGURE 4. A geodesic (in blue) and (3, 0)-quasi-geodesic (in orange) with
the same endpoints in the Cayley graph of Z2.

In order to obtain the stability statement, we must first obtain an estimate on the
length of paths different from geodesics. Simply stated, we have that the length of a path
grows at least exponentially with its distance from a geodesic between its endpoints.

LEMMA 2.12. Let X be a d-hyperbolic space, and xz,y € X. If~v: I — X is a
continuous rectifiable path between x and y, then

d(z,7(1)) < S max{0,logy £(7)} +2
for any z on a geodesic between x and y.

PROOF. Let n = [logy ¢(7)] and suppose that «y is a parameterisation proportional
to arc-length, so that we may write I = [0, 1]. If () < 1 then there is nothing to prove,
so suppose otherwise. It follows that n > 1 is a positive natural number.

Let z be a point on a geodesic from = = (0) to y = (1). Since triangles in X
are d-slim, for any k > 0 and i = 1,...,2%, any point on a geodesic [v(i_l),v(z%)] is at

; 2F
most distance ¢ from a geodesic of the form [’y(%),'y(#)] for some 1 < j < 281 [t

follows by a finite induction that for any k£ > 0, there is 1 < i < 2k such that
(2.1) d(z,p) < dk.
where p is a geodesic of the form [y(%L), 7(2%)]

2k . ,
Now for any ¢ = 1,...,2", the length of the subpath v restricted to [’2%1, 5] is at
most 1 by the choice of n. Hence any point on a geodesic between v(5:t) and v(5) is
a distance of less than 1 from ~(I). Combined with (2.1) applied to the case k = n, this

fact gives the required inequality. U

PROPOSITION 2.13 (Morse Lemma). Let X be a §-hyperbolic space, A > 1, and ¢ > 0.
There is a constant M = M (X, ¢,d) > 0 such that any (X, ¢)-quasi-geodesic segment in X
1s a Hausdorff distance of at most M from any geodesic segment between its endpoints.

PROOF. Let v: I — X be a (A, ¢)-quasi-geodesic segment, and write x and y for its
endpoints. Applying the lemma on continuous quasi-geodesics, there is a (), ¢’)-quasi-
geodesic v': J — X with the same endpoints as ~, lying a Hausdorff distance of at most
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c from v. We may suppose that 7' is parametrised by arc-length. Fix a geodesic p whose
endpoints are also z and y. Let z be a point on p maximising r = d(z,~’), which exists
by continuity. We will exhibit an absolute bound on r.

Let 2’ and ¢’ be points on p between z and z and y and z respectively, with d(z/, 2) =
d(y', z) = 2r (choosing ' = z or ¢/ = y if d(z,2) < 2r or d(y, z) < 2r respectively). By
the definition of z, we have

d(2',9)<r and d(y,y) <7

Let s,t € [a,b] be points such that d(z’,7/(s)) and d(y’,~'(t)) realise the distances from
z' and 3 to +/, which again exist by continuity. We will say s < ¢, swapping the names
if otherwise. It follows then, that

d(v'(s),7'(t) < d(v(s), ") + d(a’,y) + d(',7/(t)) < 6r

Write £ for concatenation of the subpath of 4/ between ~/(s) and +/(t) with geodesics
[#',7/(s)] and [¥/(t),y']. Now using the fact that +' is a quasi-geodesic, the above implies
that

&) <1+ L( |5 ) +7 < (6X+2)r 4+ X
Then by Lemma 2.12 and the choice of z, we have
r=d(z,£) < §logy((6X + 2)r + X)) + 2.
Rearranging slightly, we have
2501 < (6A + 2)r + A/

so that an exponential function in r is bounded above by a linear function in r. This
imposes a uniform bound M’ on r depending on these two functions, which in turn
depend only on §, A, and c¢. Thus p is contained in a M’-neighbourhood of ~'.

FiGURE 5. Illustration of the proof of the Morse Lemma.

We have thus shown that p € Ny (v(I)). To show the converse inclusion, let t € J.
Of course, if ¢t is an endpoint of J we are done, so suppose otherwise. By continuity
of 4/, there is a point z of p and numbers s < ¢t < s’ such that d(7/(s),z) < M’ and
d(v/(s"),2z) < M’'. Thus d(v/(s),v'(s")) < 2M’'. As v/ is a quasi-geodesic, this implies

6(7/’[5,5’]) < IAM' + 2.

Whence d(y(t),p) < (2A + 1)M’ + A\. Finally, setting M = 2\ + )M’ + (A + 1)
completes the proof. O
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REMARK 2.14. The key point in the proof was the exponential length estimate on
non-geodesic paths in hyperbolic metric spaces. The condition of quasigeodesicity in the
Morse Lemma gives a linear upper bound to this exponential bound, but the proof works
just as well if the distortion on the length of the path is subexponential.

The most important consequence of the Morse Lemma is the quasi-isometry invari-
ance of hyperbolicity.

THEOREM 2.15. For any A\ > 1,¢ >0, and § > 0 there is a constant 8’ > 0 such that
the following is true.

Let X and Y be geodesic spaces, and suppose that X is a §-hyperbolic metric space. If
f:Y = X is a () ¢)-quasi-isometric embedding, then'Y is a §'-hyperbolic metric space.

PROOF. Let A be a geodesic triangle in Y with sides p, ¢, and r. The paths f(p), f(q),
and f(r) are (X, ¢)-quasi-geodesics in X. Since X is d-hyperbolic, the Morse Lemma gives
us a constant M = M (A, ¢,d) > 0 such that each of these paths is within an M-Hausdorff
neighbourhood of any geodesic between their endpoints.

As geodesic triangles are d-slim in X, any side of a geodesic triangle whose vertices
are the endpoints of f(p), f(¢q), and f(r) is contained in a d-neighbourhood of the other
two. Thus f(p) is contained in a (6 + 2M )-neighbourhood of f(q) U f(r). Let z be a
point in p. By the above there is a point y in g or 7 such that dx (f(z), f(y)) < 0+ 2M.
Now as f is a (A, ¢)-quasi-isometry, we have

dy (z,y) < Adx(f(z), f(y)) + Ae < (6 +2M + ).

By symmetry, analogous inequalities are true for points on ¢ and on r. Hence every
geodesic triangle in Y is (6 + 2M + ¢)A-slim. We see that Y is §’-hyperbolic, where
& =2(0+2M + ). O

COROLLARY 2.16. Let X and Y be quasi-isometric geodesic spaces. Then X is a
hyperbolic metric space if and only if Y is a hyperbolic metric space.

Note that d-hyperbolicity is not invariant under quasi-isometry — the constant of
hyperbolicity may change depending on the quasi-isometry constants. Indeed, given a
d-hyperbolic metric space X, one can attach a sphere of diameter R to obtain a space
X' that is not d-hyperbolic if R > §. Of course, X and X’ are (1,7 R)-quasi-isometric,
and X' is clearly ¢’-hyperbolic, where &' = § + R.

One of the central features of hyperbolicity is the prevalence of many ‘local-to-global’
phenomena: results that conclude something about the large-scale, global geometry of a
space from small-scale, local conditions. Frequently useful is the sufficient condition for
quasi-geodesics below.

DEFINITION 2.17 (Local quasi-geodesic). Let X be a metric space, A > 1,¢ > 0, and
k > 0. A rectifiable path p: I — X is a k-local (X, ¢)-quasi-geodesic if each subpath g of
p with (q) < k is a (A, ¢)-quasi-geodesic.

THEOREM 2.18. Let X be a §-hyperbolic space, X > 1, and ¢ > 0. There are X' >
1, >0, and k > 0 such that every k-local (X, ¢)-quasigeodesic is (N, ')-quasigeodesic.

PROOF. Let M = M(A, ¢, d) be the constant of the Morse Lemma, and let k =
2A(2M + 40+ c+1). Let v: I — X be a k-local (), ¢)-quasigeodesic, and let p: J — X
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be a geodesic with the same endpoints. Suppose both « and p are parametrised by arc-
length. Increasing ¢, we may assume ~ is continuous by Lemma 3.11, so that the upper
bound d(y(t),v(t')) < |t — t/| holds trivially for any ¢,¢' € I. The idea is that points at
k/2-intervals along ~ will project to points making uniform progress along on p.

We first claim that v(I) is contained in a uniform neighbourhood of p(J). Let ¢ €
I maximise d(y(t),p(J)), and let s,u € I be the points s = max{t — %,inf([)} and
u = min{t + 5,sup(I)}. Let s,/ € J be such that p(s') and p(u’) are the closest
points on p to y(s) and y(u). By the Morse Lemma, 7(t) is M-close to a point z
on a geodesic [y(s),v(u)]. Consider the rectangle whose vertices are ~(s),v(u), p(s'),
and p(u). By hyperbolicity, this rectangle is 26-slim, so z is 2d-close to a point w on
[v(s), p(s)], [v(w), p(u)], or [p(s"), p(u')]. We will rule out the former two possibilities,
which completes the claim.

Indeed, suppose that w is a point on [y(s), p(s')] with d(z,w) < 2. Thus we have
d(vy(t),w) <20 + M. Since 7 is a (A, ¢)-quasigeodesic when restricted to [s, t], we have
d(v(s),7(t)) > 3xk — c. The triangle inequality then gives us

(2.2) —d(y(s),w) <26+ M — %k +c.

Now using the fact that [y(s), p(s')] is a geodesic on which w lies,

d(v(t),p(s) < d(y(t), w) + d(w,p(s"))
<20+ M +d(v(s),p(s)) — d(v(s), w).

Whereby (2.2) and the choice of k allows us to conclude

A1), p(5))) < A(r(s),pls) + 46+ 2M + ¢~ ok < d(1(s), p(s))

which contradicts the choice of t. A symmetrical argument applies to show that w does
not lie on [y(u), p(u’)]. Therefore d(y(t),p(J)) < M + 26.

We are now ready to prove the main statement. Let tg < --- < t,, be a partition of 1
such that ¢t; —t;_y = k/2fori=1,...,n—1, and t, —t,—1 < k/2. Foreachi=0,...,n,
let s; € J be a point with d(y(t;),p(si)) < 20 + M, as guaranteed to exist by the claim
above. By techniques similar to the proof of the claim, one can show s;_1 < s; for all
i =1,...,n. Moreover, by local quasigeodesicity of v and the choice of k,

A(p(s51), p(s)) > %k Ce— oM — 45> 1,

forany i =1,...,n. As so < --- < sy, it follows that for any 0 <i < j<mn
d(p(si), p(s5)) = j —i.

Let t,t' € I be arbitrary. There are ¢,j € N minimising |t —¢;| and |[t' —¢;|. By
construction, these quantities are at most 1k, and [t; — t;| = 3|i — j|k (out of laziness,
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we ignore the edge case that ¢ or j is equal to n here). Combining all of the above
d(y(t),7(t) = d(v(t:),v(t)) — d(v(®),v(t:)) — d(v({t), ¥(¢5))
1
2 d(p(s), p(s)) = 2M — 46 — 5 Ak — 2c

1
> [i— j| = 2M — 45 — S Ak — 2

it —til = ¢
=k % 7

> %‘t—t’\ —d,

where \ = %k‘ and ¢ = 2M + 48 + 2¢ + %)\k. O

There are many refinements one can apply to the above statement. For instance, the
multiplicative constant A’ can be made arbitrarily close to A, provided one insists that
the local quasigeodesics are quasigeodesic on a sufficiently large scale.

REMARK 2.19. Interestingly, the converse of the above theorem also holds: if a
geodesic space has the property that all (large enough scale) local quasigeodesics are in
fact quasigeodesics, the space is hyperbolic [Bon96]. Thus such local-to-global properties
are not only characteristic of hyperbolicity, but also unique to it. Indeed, this is true for
a number of the basic theorems one proves about hyperbolicity. For instance, a geodesic
space where the Morse Lemma holds is also necessarily a hyperbolic metric space.

We state without proof a useful and philosophically important result about hyperbolic
spaces. It says that any finite set of points in a hyperbolic space can be approximated
uniformly well by a tree having those points as vertices. This adds to the intuition that
hyperbolic spaces are really like thickened trees: see [CDP90, Chapitre 8§].

THEOREM 2.20. Let X be a §-hyperbolic metric space. There is a function h: N —
[0,00) such that if x1,...,x, € X are points, there is an embedded simplicial tree T C X
with x1,...,xy, as vertices with

dp (s, zj) < dx(xi, x;) + dh(n)
foranyi,j =1,...,n. Moreover, h(n) = O(logn).

3. Quasiconvex subspaces

In the study of geodesic metric spaces generally, the most well-behaved subspaces
are the convexr subspaces, subspaces that contain every geodesic with endpoints in the
subspace. For a convex subspace, the intrinsic length metric of the subspace naturally
coincides with the induced metric it inherits from the ambient space, so that the geometry
of the subspace respects the geometry of the space it lives in. Since we are interested
in coarse geometric properties of metric spaces, we will require a coarse version of this
notion.

DEFINITION 3.1 (Quasiconvex subset). Let X be a geodesic space and o > 0. We
say that a subspace Y C X is o-quasiconvex if the image of any geodesic in X with
endpoints in Y is contained in a g-neighbourhood of Y.
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It is a general fact that quasiconvex subsets are quasi-isometrically embedded in their
ambient spaces. This mirrors the fact that convex subspaces are isometrically embedded
in geodesic spaces. We will need some notation to be able to state this precisely.

DEFINITION 3.2 (Coarse metric). Let (X,dx) be a metric space, r > 0. The the
metric dy, on X is defined to dx ,(x,y) = n, where n is the minimal integer such that
there is a sequence of points zg,...,z, € X with g = z,z, = y, and dx(z;—1,z;) < r
foralli=1,...,n.

REMARK 3.3. This is the same as the edge path metric on the 1-skeleton of the Rips
complex P.(X), which we will define in Section 7 of Chapter 3.

LEMMA 3.4. Let (X,dx) be a geodesic space, and Y C X a subspace with induced
metric dy = dx |yxy. If there is 0 > 0 such that Y is o-quasiconvez, then the inclusion
map (Y,dy,) — (X,dx) is a (r,1)-quasi-isometry for any r > 20 + 1.

PRrROOF. Let a,b € Y be points and r > 20 + 1,. Let p: I — X be a geodesic in
X with endpoints a and b. Take a partition ty < --- < t,, of I where t; —t;_1 = 1 for
i=1,....,n—1and ¢, — t,—1 < 1. We have that n — 1 < dx(a,b) < n. For each
i=0,...,n, there is y; € Y with dx(y;,p(t;)) < o. Of course, we can take yp = a and
yn = b. Thus for each ¢ = 1,...,n, we have

dy (yi-1,4i) <20 +1 <7
It follows that
dy,(a,b) <n <dx(a,b)+ 1.
The inequality dx (a,b) < rdy,(a,b) is immediate, as every path in Y yields a path in X
with length multiplied by at most r. Hence the inclusion map ¥ — X is a (r, 1)-quasi-
isometric embedding. O

LEMMA 3.5. Let X be a hyperbolic metric space, Y C X a geodesic subspace. If Y is
quasiconver, then it is a hyperbolic metric space.

ProOF. This is an immediate consequence of Lemma 3.4 and Theorem 2.15. U
In hyperbolic spaces, the converse of Lemma 3.4 also holds true.

LEMMA 3.6. Let X be a §-hyperbolic metric space, A > 1 andc > 0. If Y is a geodesic
space and f:Y — X is a quasi-isometric embedding, then there is o = o(\,¢,6) > 0
such that f(Y) is o-quasiconvex.

PROOF. Let M = M(\,¢,d) be the constant of the Morse Lemma. Any two points
in Y may be joined by a geodesic, so that any two points in f(Y') may be joined by a
(A, ¢)-quasigeodesic lying entirely in Y. The Morse Lemma implies that any geodesic in
X with the same endpoints as such a quasi-geodesic is contained in an M-neighbourhood
of it. Hence f(Y') is o-quasiconvex with o = M. O

4. The boundary of a hyperbolic metric space

In this ssection we introduce a natural bordification of hyperbolic metric spaces.
Intuitively, this is the space of ‘endpoints’ of geodesic rays in the space. The study of
boundaries of hyperbolic metric spaces is not only useful — as we shall later see — to
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the theory of groups acting on hyperbolic spaces, but also plays an essential role in the
understanding the metric geometry of these spaces.

DEFINITION 4.1 (Gromov boundary). Let X be a hyperbolic metric space. We say
two geodesic rays are asymptotic if their images are a finite Hausdorff distance apart.
The Gromov boundary of X is the set X of equivalence classes of geodesic rays in X,
up to the relation of being asymptotic.

EXERCISE 4.2. Suppose that X is a proper hyperbolic metric space. Show that for
any x € X and p € 0X, there is a geodesic ray based at x whose endpoint is p. Show
that for any p,q € 0X, there is a bi-infinite geodesic line whose endpoints are p and q.

(Hint: Construct a sequence of finite approximating geodesic segments, then apply
the Arzela—Ascoli theorem and properness to conclude.)

It follows from the above exercise that for a proper hyperbolic space X, the set 0.X is
in bijection with the classes or rays based at any particular given point x € X. We will
find it convenient to formulate some things regarding the boundary using this, though
we must check independence from the choice of basepoint whenever we do so.

Many constructions and statements we present here will hold true for general hyper-
bolic spaces, but it turns out that if one does not assume that the space is proper, then
many additional technicalities arise. For instance, in the above exercise, one would need
to replace ‘geodesic’ with ‘(1,206)-quasigeodesic’. Since we will only ever be working
with proper spaces in practice, we will usually include this assumption.

The following exercise demonstrates one such complication that comes with not as-
suming properness, even in the simple setting of trees.

EXERCISE 4.3. Show that if X is an unbounded proper hyperbolic space, then 90X
is non-empty. To contrast, construct an unbounded tree T' for which 9T is empty.

The Gromov boundary carries a natural topology, wherein we declare that two points
are close if they have representative geodesics that stay close for a long time.

DEFINITION 4.4 (Topology on the boundary). Let X be a proper hyperbolic metric
space and fix a point x € X. For p € 0X and r > 0, define the set

[0, oo) — X are geodesic rays with v(0) = £(0) = z, }
=[],q =[¢], and liminf, oo (y(¢),&(t))x > 7 :

The sets U(p,r) form a basis of neighbourhoods of p for a topology on 0X.

Up,r) = {qGE)X ’ 7€

EXERCISE 4.5. Verify that the collection of sets U(p,r) actually define a neighbour-
hood basis for a topology on 0X. That is, if p,p’ € X and r,r’ > 0, then there is
q € 0X and s > 0 such that

Ulg,s) CU(p,r)NUW,r").
Further, show that this topology is independent of the choice of basepoint.

EXAMPLE 4.6.

o If T is a tree with valence at least 3 at every vertex, then 0T is a Cantor set.
e The boundary of H" is the sphere S 1.
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EXERCISE 4.7. Pick some basepoint x in a proper hyperbolic metric space X. We say
a sequence (z;);en converges at infinity if liminf; ;oo (@i, ); = 0o. Two such sequences
(xi)ien and (y;)ien are said to be asymptotic if liminf; ;o (2;, y;)» = 00. Show that the
set of equivalence classes of asymptotic sequences is in bijection with 0.X. For a sequence
(x;) converging at infinity, we write that z; — ¢ € 0X if ¢ is the image of the class (x;)
represents under this bijection.

Further, we equip this set with a topology generated by the basis of neighbourhoods

(x4)ieN, (¥i)ien are sequences converging at infinity }

Vip,r) = {q €0X ‘ with z; = p,y; = ¢, and liminf; joo (2, yj)z > 7

Show that this topology coincides with that of Definition 4.4.

DEFINITION 4.8 (Gromov product at infinity). Let X be a proper hyperbolic metric
space and z € X. Given p,q € X U0X, we write
(P, @)x = supliminf(z;, y;)z
j—00
where the supremum is taken over all sequences (x;) and (y;) in X converging to p and
to q respectively.

EXERCISE 4.9. Let X be a proper é-hyperbolic metric space, x € X and p,q €
X U9JX. Show that if (p,q)y < r, there is a point z on any geodesic line [p,¢q] with
d(z,z) <r+26.

Boundaries of hyperbolic spaces admit metrics the induce the natural topology above.
In particular, they are metrisable spaces, and so inherit all the wonderful properties of
metric spaces (for example, they are regular, paracompact, and so on).

DEFINITION 4.10 (Visual metric). Let X be a proper hyperbolic metric space and
let @ > 1. Pick a basepoint € X and for any p,q € X, choose a bi-infinite geodesic in
X joining p and ¢. Call [, (p, q) the distance of the geodesic to the point x.

A metric d on 90X is called a visual metric with parameter a if there is a constant C
such that

éaflz(p,q) < d(p,q) < Ca =9,

It is not very hard to construct explicit visual metrics on boundaries of hyperbolic
spaces (for example, see [BH99, Section III.H.3|, but we will their existence for granted
here. Note that visual metrics are not canonical: there may be many depending on the
choice of parameter. However, all visual metrics on a proper hyperbolic metric space
are quasi-symmetric. That is, there is a self-homeomorphism of the space mapping one
metric to the other, preserving annuli in the space in a uniform way. A quasi-conformal
map is a map that is quasi-symmetric and has quasi-symmetric inverse. The metric
structure of the boundary up to quasi-conformal transformations is a canonical invariant
of the space. We will not give precise definitions or pursue these notions further here.

PROPOSITION 4.11. Let X be a proper hyperbolic metric space. Then 0X is compact.

PROOF. Observe that the basis of neighbourhoods U(p,r) define the same topology
as in Definition 4.4 if one takes r > 0 ranging over the rational numbers. Thus 0X is
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first countable. Since 0X is metrisable, this means that compactness is equivalent to
sequential compactness.

Sequential compactness is a quick consequence of properness and the Arzela—Ascoli
theorem. We may take a sequence of points (p;) in 9X and geodesic rays (+y;) representing
these points, and the aforementioned theorem tells us that some subsequence (7,,) of
these converges to a ray ~. It follows that a = [y] is a limit of the subsequence (p,,). O

One can extend the topology in Definition 4.4 to include points within the space, by
allowing the both geodesic rays and segments in the definition. This gives a topology on
X UO0X for which the subspace topology on X agrees with the topology induced by the
metric on X. Indeed, the same argument as the previous lemma shows that X U 9X is
compact with this topology, so that 0X can be thought of as a compactification of X.

PROPOSITION 4.12. Let X be a proper hyperbolic space. Then X U9X is compact.

There is in fact the maximal possible diversity among the spaces that can be realised
as boundaries of hyperbolic spaces.

PROPOSITION 4.13. For any compact metrisable space M, there is a proper hyperbolic
metric space X with 0X = M.

PROOF. Every regular second countable Hausdorff space is homeomorphic to a sub-
space of the Hilbert cube C' = [T, .10, %] by the Urysohn metrisation theorem. Certainly,
M satisfies this criterion as it is a compact metric space. Further, C can be embedded
into the unit sphere of a separable Banach space: C already naturally lies in the unit
ball of a separable Banach space H’, so project it to the upper hemisphere of the unit
ball in H = H’ x R. Thus there is a topological embedding ¢: M — S, where S is the
unit sphere of a separable Banach space H.

We equip the open unit ball B with with the Cayley-Klein metric d, which is defined
as follows. For any z,y € B, let p,q € S be the points of & meeting the line L =
{Ap+ (1 —N)g| A € R}. The metric is defined as

[l — qlllly — pll

Iz = plllly — qll

Note that the quantity in the logarithm is the cross-ratio, which may be familiar from
projective geometry, and plays a large role in hyperbolic geometry. This metric makes B
a model for an infinite dimensional hyperbolic space, and S is its ideal boundary.

One can verify that the geodesics with respect to this metric are exactly intersections
of lines (that is, one-dimensional affine linear subspaces) of H with B. It follows that
the convex hull of a subset of a subset of B with respect to the metric d is exactly the
convex hull with respect to H, the set of all linear combinations of points in the subset.

Let X C B be the intersection of the convex hull of «(M) with B. Now X is a convex
subset of a hyperbolic metric space, so is itself a hyperbolic metric space. Essentially by
definition, 0X = «(M) = M. It remains to verify that X is proper.

The convex hull (in the linear sense) of a compact subset of a Banach space is compact,
so that X U¢(M) is compact. As (M) is closed in this set, this implies that X is locally
compact. Finally, B is complete with respect to the Cayley-Klein metric, and X is convex
(therefore closed) in B, so X is also complete. The Hopf-Rinow theorem now tells us
that X is a proper metric space. O

1
d(z,y) = 5 |log
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Note that there are more general constructions, sometimes called hyperbolic cones,
which realise any complete and bounded metric space as the boundary of a hyperbolic
metric space: see [BS07, Chapter 6].

PROPOSITION 4.14. Let X and Y be proper hyperbolic metric spaces. If f: X — Y
is a quasi-isometric embedding, then there is an induced map Of: 0X — OY which is a
topological embedding. If, further, f is a quasi-isometry, then Of is a homeomorphism.

PROOF. Let A > 1 and ¢ > 0 be quasi-isometry constants for f. We will define 0 f
by pushing forward a geodesic representative of each point in 0.X. Let p € 0X and let
v: [0,00) — X be a geodesic ray based at a point z € X that tends to p. By definition,
the path fo-~yisa (A, ¢)-quasigeodesic ray in Y. By the Morse Lemma, there is a constant
M > 0 such that for each ¢ € (0,00), the segment f o 7‘[071:} is a Hausdorff distance of at
most M from a geodesic & with the same endpoints. Moreover, as f is a quasi-isometry,
d(f(y), f(7(t))) = o0 as t — oc.

By properness and the Arzela—Ascoli theorem, the sequence of paths (&,)nen has
a subsequence converging to a geodesic ray &£: [0,00) — Y based at y = f(z), with
endpoint ¢ € 9Y. We define f(p) = ¢. Since any two geodesics define the same point
in 0X if and only if they lie within a finite Hausdorff distance of one another, the same
is true of their images under f. It follows that the map J0f is well-defined and injective.

Let us show that df is continuous. Let ¢ € im(df) and s > 0, and let § be a
hyperbolicity constant for X and Y. We need to exhibit » > 0 such that 0f(U(p,r)) C
U(g,s), where 0f(p) = q. Take

1 1
r:(s+M+§)\5+§c))\+c+M+1

and let p’ € U(p,r). Let v and v/ be geodesic rays based at a point z € X tending to p and
p' respectively. By hyperbolicity and the definition of U(p, r), we have dx (y(t),7(t)) <
for ¢ < r. This gives us

(4.1) dy (fy(@t), fY'(t)) <X +c fort<r

Now fo~v and f o~/ are (), ¢)-quasigeodesic rays based at y = f(z) € Y. By the
Morse Lemma and arguments similar to above, therefore, there is M > 0 such that they
are M-close to geodesics € and ¢ based at y and tending to ¢ = 9f(p) and ¢ = 9f(p')
respectively. It then follows from (4.1) then

dy (£(t),€'(t)) <2M +Xo+c¢  fort < %r —c— M.

We can use this to bound the inner product from below:

2(6(1), €' (1))y = d(€(®),y) + d(€'(1),y) — d(€(1),£'(1))
>2t—2M — X\ —c

for t < %r — ¢ — M. In particular, by choice of r, taking ¢t = %T —c— M > 0 shows us
that (£(t),&'(t))y > s. Observing that the inner product is monotone increasing in both
factors along geodesics shows that ¢’ € U(q, s) as required.

When f is a quasi-isometry, it has a quasi-inverse g: ¥ — X with doo(go f,idx) < 0.
It follows from the functoriality properties of the upcoming exercise that

dgodf =0(go f)=0idx =idgx,
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so that necessarily df is a surjective map. O

The homeomorphism type of the boundary can serve as a useful quasi-isometry in-
variant. For example, one can distinguish the real hyperbolic spaces H" and H™ from one
another up to quasi-isometry when n # m, as their boundaries are spheres of different
dimensions.

Note that the boundary is not a complete invariant: real hyperbolic 2n-space H?"
and complex hyperbolic n-space H (the unique simply connected Hermitian manifold
with constant negative holomorphic sectional curvature) are not quasi-isometric, though
both have Gromov boundary S$2"~!. The quasi-conformal structure of the boundary of a
hyperbolic space, a finer structure than its topological type, is actually enough to recover
the hyperbolic space up to quasi-isometry, though we will not prove this here.

EXERCISE 4.15. Let X, Y, and Z be proper hyperbolic metric spaces. Show that the
operator O satisfies the following properties:
(i) If f,9: X — Y are quasi-isometric embeddings with doo(f,g) < oo, then we
have 9f = dg;
(ii)) If f: X — Y and ¢g: Y — Z are quasi-isometric embeddings, then we have
dgo f)=0g00df;
In other words, 0 is a functor from the category of proper hyperbolic metric spaces (with
quasi-isometric embeddings up to finite distance as the morphisms) to the category of
compact metrisable spaces (with quasi-symmetric embeddings as morphisms).

5. Isometries of hyperbolic metric spaces

In this section we will classify isometries of hyperbolic metric spaces. We will see
that a similar trichotomy holds as for those of classical hyperbolic spaces. Below is a
largely elementary proof, stolen from [CDP90, Chapitre 9]. There will be an arguably
simpler proof of this fact later on, using much more advanced machinery.

DEFINITION 5.1. Let X be a hyperbolic metric space, and g € Isom(X) an isometry.
We say that g is elliptic if the set {¢g"x}nen is bounded for any z € X For g with
unbounded orbits, we say that g is parabolic if g has exactly one fixed point in 0.X, and
that g is loxodromic if it has exactly two fixed points in 0.X.

EXERCISE 5.2. Let X be a proper hyperbolic metric space. Show that g € Isom(X)
is loxodromic if and only if the orbit map n — g™« is a quasi-isometry Z — X for any
e X.

(Hint: Consider the geodesic lines between the two fixed points of g. The set of these
lines is preserved by g: show that g acts as a sort of translation along these lines. Picking
a point on these lines realises the orbit map as a quasi-isometry, where the constants are
related to the translation length and the hyperbolicity constant).

THEOREM b5.3. Every isometry of a proper hyperbolic metric space is either elliptic,
parabolic, or loxodromic.

To show this, we will require the following two lemmas, which give us criteria for
certain isometries of hyperbolic metric spaces to be loxodromic.
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LEMMA 5.4. Let X be a proper §-hyperbolic metric space, g € Isom(X) an isometry.
If there is x € X with

d(gz, z) > 2(¢%x, x) gz + 20,
then g is a loxodromic isometry.

PROOF. For each n € N, we write d,, = d(¢"x,z). We may thus rewrite the lemma
hypothesis as

(5.1) do>di +20+¢

where € > 0. We will show by induction that d,, > d,,—1 + € for n € N. For the base case
that n = 1 observe that by the triangle inequality, we have ds < 2d;. Combining this
with (5.1) implies d; > e.

Of course, the case n = 2 follows from (5.1). Let n > 3 and suppose that d,, >
dn_1 + . We apply the four-point condition to the points x, gz, g°x, and ¢"*'z, giving
that do + d,, < max{d; + dp4+1,d1 + dn—1} + 26. Rearranging, we have

da + dp, —di — 20 < max{dp+1,dp—1}.
Rearranging the equation (5.1) reduces the above to
dp + e <max{dyt1,dn_1}.
By the induction hypothesis, d,,—1 +¢ < d,, so we are must in fact have d4+n+¢e < dp41,
as required. It follows immediately that d,, > ne. Now
gln —m| < d(g"x,g™x) < di|n —m]|
so the map n — g™« is a quasi-isometry, whence Exercise 5.2 completes the lemma. [

LEMMA 5.5. Let X be a proper d-hyperbolic metric space, and g, h € Isom(X) non-
loxodromic isometries. If there is x € X such that

d(gz,x) > 2(gx,hx), + 66 and  d(hz,z) > 2(gx, hx), + 60
then gh and hg are loxodromic isometries.

PROOF. Let x € X be as in the lemma statement. We will attempt to find a bound
on the Gromov product (x, ghgha) g, so that we can apply Lemma 5.4 to the isometry
gh. The proof is quite technical and involves a lot of inequalities, but the idea is simply
that one can transfer the condition on the bounded inner products in the hypothesis
along a polygon in X to get the required bound. The fact that X is hyperbolic is what

allows one to do this without losing too much length.
Since g and h are not loxodromic, Lemma 5.4 tells us that

(5.2) d(g%z,z) < d(gz,z) +26 and  d(h%z,z) < d(hz,x) + 26.
Moreover, rearranging the lemma hypotheses, we obtain
(5.3) d(gz, hz) > d(gz,xz) +60 + ¢ and  d(gz,hz) > d(hx,z) + 66 + ¢

for some ¢ > 0. Now applying the four-point condition to z,gx,¢?x, and ghx and
simplifying, we obtain

d(gz,z) + d(gz, he) < max{d(¢*z,z) + d(hz,z),d(g9z,z) + d(ghz,z)} + 26.
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But (5.2) and (5.3) imply that d(gz, ) + d(gz, hx) > d(g?x,z) + d(hz,x) + 46 + €. As
e > 0, we must have that d(gz, z)+d(gz, hx) < d(gz, z)+d(ghx,x)+25. A symmetrical
argument applies for hg, considering the four points z, hx, h?z, and hgz. Simplifying and
applying (5.3), we get the equations
d(gz,x) +40 + ¢ < d(ghx,z) and d(gz,z)+ 4 +¢e < d(hgz,x),
d(hz,z) + 46 + e < d(ghz,z) and d(hz,z)+ 4 +¢e < d(hgz,x).

Now applying the four-point condition to the points x, gz, ghx, and ghgx gives sim-
ilarly

(5.4)

d(ghz,z) + d(hgz, ) < max{2d(gz,x),d(x, ghgz) + d(hz,x)} + 20.

Now the first line of (5.4) shows that d(ghx, z) +d(hgz, z) > 2d(gz, z), so the first term
in the above maximum is redundant. Two applications of (5.4) then tell us that we have
(5.5) d(gz,x) + 60 + ¢ < d(ghgxr,z) and d(hx,z)+ 66+ < d(ghgz,x).

Finally, we apply the four-point condition to the points x, ghx, ghgx, and ghghz.
This gives us

d(ghz,z) + d(ghgz, ) < max{d(ghz,z) + d(hz, z),d(ghghz,z) + d(gz, x)} + 20.
Similarly to before, (5.5) rules out the first term in the maximum. Applying (5.5) to the
remaining inequality gives us

d(ghz,z) + 6 + ¢ < d(ghghz, x),

which one straightforwardly rearranges to see that d(ghx,x) > (ghghx,z)gp,. We now

apply Lemma 5.4 to conclude that gh is loxodromic. A symmetrical argument concludes
the same about hg. U

PROOF OF THEOREM 5.3. Let g € Isom(X) be an isometry that is not elliptic,
parabolic, or loxodromic, and let z € X. As g is not elliptic, the orbit {¢"z},en is
unbounded. Since X U dX is compact by Proposition 4.12 and g is not parabolic, there
are subsequences (¢"z) and (¢"z) converging to distinct points a,b € 0.X.

By the definition of the topology on 0X, there is some r > 0 and N € N such that

(g"w, g™ w)e <7
for all i > N. Now since g has unbounded orbits, there is N’ € N such that d(¢"z,z) >

2r + 60 for n > N’. Choosing i > max{N’,ny, my} allows us to apply Lemma 5.5 to
see that g"i™™ is loxodromic. This contradicts the fact that g is not loxodromic. (]



CHAPTER 3

Negative curvature in groups

In this chapter we will study the groups that act on hyperbolic metric spaces. The
most well-behaved such groups are, naturally, those that act geometrically on proper
hyperbolic metric spaces. Remarkably, this entirely geometric condition has incredibly
strong consequences for the algebraic structure of these groups. To this end, we will
apply some of the machinery developed in the previous chapter, as well as develop some
entirely new tools.

1. Hyperbolic groups

The class of hyperbolic groups includes many groups of classical interest to group
theorists, topologists, and geometers. As well as providing a convenient and clarifying
framework for understanding groups with ‘negative curvature’, the study of hyperbolic
groups has paved the way for some deep insights into and novel results on these groups.

DEFINITION 1.1 (Hyperbolic group). A group is called hyperbolic if it admits a geo-
metric action on a proper hyperbolic metric space.

Equivalently, we may say a finitely generated group is hyperbolic if it has a finite
generating set with respect to which the Cayley graph is a a hyperbolic metric space,
invoking the Milnor—Schwarz lemma. By Lemma 3.6, the quasi-isometry type of a Cayley
graph is preserved by a change of finite generating set, and hyperbolicity is preserved by
quasi-isometries by Corollary 2.16. Hence the hyperbolicity of any such Cayley graph is
independent of which finite generating set is chosen for a hyperbolic group.

EXAMPLE 1.2.

e The Cayley graph of any finitely generated free group with respect to a free
generating set is a simplicial tree, and hence O-hyperbolic. Therefore finitely
generated free groups are hyperbolic.

e If M is a closed hyperbolic n-manifold, its fundamental group w1 M acts ge-
ometrically on its isometric universal cover H". We saw earlier that H" is a
hyperbolic metric space, so w1 M is a hyperbolic group.

e Every finite group is hyperbolic as it is quasi-isometric to a point, and every
virtually cyclic group is hyperbolic as it is quasi-isometric to a line. We call these
elementary hyperbolic groups — they are the only virtually abelian ones — and
all others non-elementary. We will later see that all non-elementary hyperbolic
groups contain non-abelian free subgroups, so are very far from being virtually
abelian.

e So-called ‘random groups’ are hyperbolic. More precisely, one can formulate
models of randomness that allow one to choose a finite presentation ‘uniformly

35
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randomly’ in some sense. In most of these models, the ‘generic’ group is almost
always a hyperbolic group.

e A group given by a presentation with relators that do not overlap too much is
hyperbolic. Such ‘small cancellation’ groups are a rich source of examples in
geometric group theory, and can exhibit somewhat peculiar properties. We will
briefly discuss this class of groups in an upcoming chapter.

ExaMPLE 1.3. The Cayley graph of Z™ with respect to the standard generators is
not a hyperbolic metric space for any n > 2, and so Z" is not a hyperbolic group.

We will see there is a sort of strong converse to the above example, in that hyperbolic
groups cannot contain higher rank abelian groups. This, among other things, will be a
consequence of the following important fact, the proof of which we will defer until later.

THEOREM 1.4. Ewvery infinite order element of a hyperbolic group is loxodromic.

The geometric condition of hyperbolicity has some strong implications for the alge-
braic structure of the group. The beginning of this study sees that centralisers of infinite
order elements are always virtually cyclic.

THEOREM 1.5. Let G be a hyperbolic group. If g € G is an element of infinite order,
then [Ca(g) = (9)] < oo.

PROOF. Take S be a finite generating set for G, so that I'(G, S) is d-hyperbolic. Let
A > 1 and ¢ > 0 be constants for which n — ¢” is a (), ¢)-quasi-isometry Z — I'(G, S).
We consider this map a quasi-geodesic by precomposing it with a quasi-isometry R — Z.
Let M = M(\, ¢, 0) be the constant obtained by the Morse Lemma.

Let h € Cg(g) be an arbitrary element of the centraliser of g and write D = |h|g.
Since g has loxodromic, there is N € N such that dg(1,¢") > 2§ + 2M + D for all
n > N. Let n > N and choose geodesics p1 = [1,9?"],p2 = [h,hg*"],q1 = [1,h], and
g2 = [¢?", hg®"]. We may take ps to be a h-translate of p;. These four geodesics form a
geodesic rectangle in I'(G, S), which is 20-slim as T'(G, S) is d-hyperbolic.

By Theorem 1.4, the points {1,g,...,9?"} are the image of a (), c)-quasi-geodesic.
Therefore by the Morse Lemma, they lie in an M-Hausdorff neighbourhood of p;. As
p2 = hpy, the same is true for {h, hg,...,hg?"} and py. Let y; be a point on p; with
ds(y1,9™) < M. By the choice of n, we have dg(y1,q;) > 26 for i = 1,2. Therefore by
the slimness of the rectangle, there is a point y2 be a point on pe with dg(y1,y2) < 2.
Now there some index j = 0,...,2n such that dg(yz, hg’) < M.

Combining all of this, we have dg(hg’, g") < 2M + 26. Using that h commutes with
g, this implies dg(h, g"~7) < 2M + 26. In other words, h € a(g), where a € G is such
that |a|g < 2M 4 26. As S is a finite set, there are only finitely many such elements.
Thus (g) has finite index in C(g) as required. O

An immediate consequence of this is that hyperbolic groups contain no subgroups
isomorphic to the Baumslag-Solitar group BS(n,n) = (a,b|ba™b~t = a™), for the whole
group centralises the infinite order element a™. In particular, hyperbolic groups cannot
contain any higher rank abelian subgroups, as Z? = BS(1, 1).

Another algebraic consequence of hyperbolicity is that one has strong control over
the torsion elements of the group. We examine a simple case to get an intuition for why
one should be able to draw such conclusions.
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EXAMPLE 1.6. Let G be a group acting geometrically on a tree T' (that is, a 0-
hyperbolic graph), and let H < G be a finite subgroup. As H is finite, the orbit Hz of
any point x € T is a finite set. Thus H fixes the barycentre of Hz; it is a subgroup of a
point stabiliser. Since the action is cocompact, there are finitely many conjugacy classes
of point stabilisers. Moreover, since the action is proper, each point stabiliser is finite.
It follows that there are only finitely many conjugacy classes of finite subgroups in G.

The general idea of the above example generalises to the hyperbolic of groups acting
geometrically on hyperbolic spaces, with some small complications. In trees, it is easy to
define a centre for a finite set of points, while this is not so obvious in hyperbolic spaces
more generally.

THEOREM 1.7. Hyperbolic groups contain finitely many conjugacy classes of finite
subgroups.

PrROOF. Let G be a hyperbolic group with a geometric action on a J-hyperbolic
metric space X. Let H < G be a finite subgroup. We will show that H preserves a
quasi-centre of its orbits. For a bounded subset Y C X, denote

Ry =inf{r >0|Y C B,(z) for some z € X},

and define the set
CY)={z € X|Y C Bry+1(z)}.
This set is non-empty by definition of Ry. We claim that diam(C(Y)) < 44 + 2.
Let z,2’ € C(Y), and let m be the midpoint of a geodesic [z,2']. Let y € Y be
an arbitrary point in Y. By hyperbolicity, there is a point ¢ on [z,y] or [2/,y] with
d(m,t) <. Suppose without loss of generality that it is the former. Now

d(y,m) < d(y,t) +d(t, m)
<d(y,z) —d(z,t) + 0 < Ry + 1+ 2§ — d(z,m).

On the other hand, there must be some y € Y with d(y,m) > Ry. Rearranging the
above equation for this y gives d(z,m) < 2§ + 1. As m is the midpoint of [z, 2], the
claim follows.

Fix a point x € X, and let B C X be a compact subset such that G - B = X, which
exists as the action is cocompact. Write K = Ny5(B) and note that K is also compact as
X is proper. As the action is properly discontinuous, the set T'= {g € G| gK N K # (}
is finite. Thus T contains finitely many distinct subgroups.

The orbit Hzx is a bounded subset of X. As the orbit Hx is setwise preserved by H,
the quasi-centre C(Hx) is also setwise preserved by H. Moreover, there is some g € G
such that gC(Hx) N B # (), since G - B = X. Thus gHg~! setwise fixes the translate
gC(Hzx). By the claim C'(Hzx) is a set of diameter at most 49 + 2 containing the identity,
which implies that gC(Hz) C K. Therefore gHg~! C T, completing the theorem. O

Hyperbolicity also allows one to rule out certain pathologies. A group in which
all elements have finite order is often called a torsion group, or a periodic group. One
pathology one might consider is that of being infinite while also having no elements of
infinite order, that is, being an infinite torsion group. Of course, there are many silly
examples of infinite torsion groups, such as an infinite direct product of finite groups, the
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quotient group Q/Z, or the Priifer group Z(p™), but sensible groups generally tend not
to contain these. Again, we will defer the proof until later on.

THEOREM 1.8. A hyperbolic group contains no infinite torsion subgroups.

REMARK 1.9. The existence of finitely generated infinite torsion groups was a for a
long time a major open problem in group theory known as the general Burnside problem.
After standing for over 60 years, a negative solution was given by Golod in 1964 [Gol64],
building on work with Shafarevich [GS64]. The constructed groups arose in connection
with the class field tower problem in number theory: they were interested in the infinitude
of certain pro-p groups arising as Galois groups of certain extensions. They established
a bound that relates the minimal number of relators and minimal number of generators
for a finite p-group.

Another important property of hyperbolic groups is that they are, in a precise sense,
very large and have many quotients. This is captured more exactly by the following
theorem due to Ol’'shanskii [O1s95], which is beyond the scope of this course.

THEOREM 1.10. Let G be a non-elementary hyperbolic group. For any countable
group C, there is a normal subgroup N < G with C' is isomorphic to a subgroup of G/N.

The property above is known as SQ@Q-universality, and it satisfied by many of the
generalisations of hyperbolic groups as well.

2. Convergence groups

We have already seen that boundaries provide a useful invariant for the coarse geo-
metric features of a hyperbolic space. When it comes to groups, it turns out that one
can further study the dynamical properties of the action of the group on its boundary to
recover algebraic information about the group. In this section we will build a framework
for understanding hyperbolic groups through their actions on boundary spaces.

2.1. Definitions and basic properties. If G is a group acting by isometries on a
hyperbolic space X, every element of G induces a homeomorphism of its boundary 0.X.
This gives us a representation G — Homeo(0.X ). To describe what sort of action this is,
we will take a step outwards in terms of the level of abstraction, and consider convergence
groups: groups that act by homeomorphisms on arbitrary metrisable compacta. The
motivation for the following definition really comes from the action of subgroups of
Isom(H") acting on the boundary sphere of H". Indeed, the setting of subgroups of
Homeo(S™) arising from isometry groups of hyperbolic space is the origin of the notion
of a convergence group.

DEFINITION 2.1 (Convergence sequence). Let M be a compact metrisable space, and
G a group acting on M by homeomorphisms. A sequence of elements (gp)nen of G is
called a convergence sequence if there are points a,b € M such that g, converges locally
uniformly on M — {b} to the constant function on a.

We call the points a and b the attracting and repelling points for the sequence (gy).
Note that a and b need not be distinct.
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EXERCISE 2.2. Show that if (g;) is a convergence sequence with attracting point a
and repelling point b, then (g; 1) is a convergence sequence with attracting point b and
repelling point a.

DEFINITION 2.3 (Convergence group). Let M be a compact metrisable space, and G
a group acting on M by homeomorphisms. We say that G is a convergence group on M
if every infinite sequence of distinct elements has a convergence subsequence.

The limit set of GG is the set AG of accumulation points of G-orbits of points in M.
We say that the action is minimal if AG = M. Further the action is elementary if AG
has at most two points, and is non-elementary otherwise.

EXAMPLE 2.4.
e A finite group is a convergence group on the empty set, and every group is a
convergence group on a point or two points with the trivial action.
e Let G be a group acting properly discontinuously on a hyperbolic space X. We
will see later that G is a convergence group on 90.X.

EXERCISE 2.5. Suppose G is a convergence group on compact metrisable space M.
Show that if GG is non-elementary, then AG is uncountable.

REMARK 2.6. It follows from the definition of a convergence group that the map
G — Homeo(M) has finite kernel, if G is a non-elementary convergence group on M.

REMARK 2.7. The above definition is sometimes referred to as a discrete convergence
group in the literature. A ‘general’ convergence sequence (g;) is a sequence that is
either a convergence sequence in the above sense, or otherwise converges uniformly to
a homeomorphism g € Homeo(M); a ‘general’ convergence group is a group that acts
on a compact metrisable space and every infinite sequence has a general convergence
subsequence. This notion is of interest as it allows one to study non-discrete group
actions on compact spaces, but here we will only be interested in discrete groups.

We will engage in an analysis of the elements of convergence groups by studying fixed
points and limit points on the boundary. Firstly, as with isometries of hyperbolic spaces,
elements of convergence groups fall into a familiar trichotomy.

DEFINITION 2.8 (Elements of convergence groups). Let G be a convergence group on
compact metrisable space M, and let g € G be an element. Then we say g is:
(i) elliptic if it has finite order;
(ii) parabolic if it is of infinite order and has exactly one fixed point in M; or
(ili) lozodromic if it is of infinite order and has exactly two fixed points in M.

LEMMA 2.9. Ewvery element of a convergence group is either elliptic, parabolic, or
loxodromic.

PRrROOF. Let G be a convergence group on M and g € G an infinite order element.
Then there is some sequence (¢™) that is a convergence sequence with attracting point
a and repelling point b. Now ¢" (gp) = gg"™ip — ga uniformly away from ¢g~'b, so that
ga is also an attracting point for (¢"™). Hence ga = a, so g has a fixed point in M.
Moreover, since the sequence convergence to a constant function on a locally uniformly
outside M — {b}, the only possible fixed points of g are a and b. Therefore any infinite
order element is either parabolic or loxodromic. O
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We have a dynamical criterion for being a loxodromic element. It allows us to reduce
the rather exact property of having fixed points to a topological nesting property that is
easier to verify.

LEMMA 2.10. Let G be a convergence group on M and g € G an element. If there is
a proper open subset U C M such that gU C U, then (g") is a convergence sequence with
attracting point in U and repelling point in M —U. Moreover, g is a loxodromic element.

PROOF. Consider the sets A = () g"U and B =g "(M —U). It is immediate from
the definition that A and B are fixed by g. By definition, A and B are disjoint. We show
that A and B both consist of singletons, which proves the lemma.

As G is a convergence group, there is a sequence (n;) such that (¢") is a convergence
sequence with attracting point a and repelling point b. Of course, we must have a € A
and b € B. Suppose that ¢ € B with ¢ # b. Then g"ic € U for sufficiently large 1.
However, B is disjoint from U, so this is a contradiction. Hence B = {b} and by a
symmetrical argument with (¢~") shows A = {a}. O

EXERCISE 2.11. Use the previous lemma to show that if (g;) is a convergence sequence
with distinct attracting and repelling points, the elements g; are eventually loxodromic.

LEMMA 2.12. Let G be a convergence group on M, and let g € G be an infinite
order element. Then (g") is a convergence sequence whose attracting and repelling points
coincide with the fixed points of g.

PROOF. Let (¢™) be a convergence subsequence of (g*) with attracting point a and
repelling point b. As in the proof of Lemma 2.9, a and b are necessarily fixed points of
g. Suppose g is parabolic and that (g*) is not a convergence sequence. Then there is
a sequence of points p; € M such that p; — p # a, and ¢"ip; — q # a, after possibly
passing to a subsequence of (¢™). But then (¢"¢) has attracting point a and repelling
point p # a. This implies that p and a are distinct fixed points of g, which contradicts
the fact that ¢ is parabolic.

Now suppose ¢ is loxodromic. Then pick some neighbourhood U of a with b ¢ U.
The set U is a compact subset not meeting b. As (g"i) is a convergence sequence, there
is some n; such that ¢"U C U. Now by Lemma 2.10, the element h = ¢" is loxodromic.
Moreover, (h’) is a convergence sequence with attracting point a and repelling point b.
It follows that (g%) is a convergence sequence also, since h is a power of g. [l

In light of the above, it makes sense to give special name to the fixed points corre-
sponding to an element of a convergence group.

DEFINITION 2.13 (Poles). Let G be a convergence group on M and g € G an infinite
order element. We write P, (respectively, Ng) for the attracting (respectively, repelling)
point of the convergence sequence (g*), and we call it the positive (respectively, negative)
pole of g.

Of course, for a parabolic element, the positive and negative poles are the same point.

In hyperbolic space, if two axes share a single point at infinity, then translations
along those axes do not generate a discrete subgroup of isometries. This behaviour is
reflected in the discrete nature of convergence groups (cf. Remark 2.7), in the form that
two elements cannot share one pole without sharing the other.
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LEMMA 2.14. Let G be a convergence group on M, and g,h € G infinite order
elements. Then the fized point sets of g and h in M are either disjoint or coincide.

PrOOF. If both g and h are parabolic, the statement is trivial. Suppose that both
g and h are loxodromic, and suppose that P, = P}, while N, # Nj. Let U be a neigh-
bourhood of P, such that Ny, N, ¢ U. By Lemma 2.12, (¢%) and (k') are convergence
sequences with attracting point P; and repelling points N, and N}, respectively. Then
there are i, j € N such that ¢°U and h’U are contained in U. For conveience, we relabel
so that ¢ = ¢* and h = h7.

Define F' = U — gU # (), and note that the sets g'F cover U — {P,}. Let p € F be a
point. Then for each 4, there is n; such that hip € g™ F. Necessarily, n; — 00 as i — 00.
Let k; = g ™A', so that k; fixes P,, and k;Ny, = g~ "N, — Ng4. This implies that there
are infinitely many distinct k;, since Ny # Np,. Let (kp,,) be a convergence subsequence.
By the above, the attracting and repelling points of (k,,,) must be among P,, N4, and
Ny. However, k;(p) € F for all i and P, Ny, N, ¢ F, a contradiction.

Finally, if g is loxodromic and h is parabolic, then g and hgh~! are loxodromic
elements with one shared fixed point, which we have just shown to be impossible. ([

EXERCISE 2.15. Show that if g is a loxodromic element of non-elementary convergence
group G, then the stabiliser of fix(g) contains (g) has a finite index subgroup.

EXERCISE 2.16. Suppose that G is a non-elementary convergence group, H < G a
subgroup. Show that if AH consists of two points, then H is contains a loxodromic
element g such that (g) has finite index in H.

2.2. Ping-pong and the Tits’ alternative. There is a relatively simple way to
construct a loxodromic with certain prescribed fixed points out of two others, a fact
which will have some powerful algebraic consequences.

LEMMA 2.17. Let G be a convergence group on M, and suppose that g,h € G are
loxodromic elements with disjoint fized point sets. Let U and V' be neighbourhoods of Py
and Py, respectively. Then there is N > 1 such that k = g"h™" is loxodromic with P, € U
and N € V for alln > N.

Proor. Let U;,U_,Vy, and V_ be neighbourhoods of P, Ny, P, and N}, respec-
tively, whose closures are disjoint. We may suppose that Uy C U and V; C V. For n
sufficiently large, we have the inclusions

"M —-U_-)cU; and g "(M-Uy)CU-_,
R*(M—-V_)cVy and A "(M-Vy)CV_.
Let k = g"h~™ and observe that (2.1) implies that
kUL Cg"h™"(M = Vi) Cg"Vo C g"(M —U-) C Uy

Similarly, k~'V, C V.. Applying Lemma 2.10, we see that k is a loxodromic element
whose fixed points lie in Uy C U and V4 C V| as required. (]

(2.1)

The following criterion allows us to build free groups of a given rank in a convergence
group, given certain loxodromic elements. The general idea is to find some elements
that bat some disjoint subsets of the space back and forth (hence the ‘ping-pong’), and
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FIGURE 1. Illustration of Lemma 2.17. The element ¢g" pushes everything
into a neighbourhood of P, and h"™ pushes everything into a neighbour-
hood of Pj,.

these elements necessarily generate a free group as a result. Ping-pong type arguments
apply in many settings, and were initially utilised by Jacques Tits, who used them to
prove that every subgroup of a finitely generated linear group either has a finite index
solvable subgroup, or contains a non-abelian free group. We will see shortly that a sort
of analogue of this theorem holds for convergence groups.

PROPOSITION 2.18 (Ping-pong lemma). Let G be a convergence group on compact
metrisable space M. If g1,...,9n € G are loxodromic elements with disjoint fized point
sets in M, then there are my,...,m, € Z such that gi"*,... gy freely generate a free
group of rank n.

PROOF. For convenience we treat the case that n = 2; the general argument is
virtually identical. Let g and h be loxodromic elements of G with disjoint fixed point
sets. Pick neighbourhoods Uy,U_,V,, and V_ of {P,, Ny} and {Py, Ny} respectively,
whose closures are disjoint. Since (¢") and (h™) are convergence sequences, there are 4
and j such that (2.1) holds. For convenience, we may replace g with g* and h with h7.

Let FF = F(g,h) be the free group generated by g and h and consider the natural
homomorphism ¢: F' — (g, h) < G. We must show that ¢ is injective.

For every word w in A = {g,h,g~',h~!}, we inductively define the set X (w) C M
as follows. Call U(g) = Uy, U(g™Y) =U_,U(h) =V, U(h™!) = V_. We define

X(a) = o(a)- |J U®)

b#a=1

for any letter a € A. Finally, we inductively define X (aw) = ¢(a) - X (w) for any letter
a € A and word w in A. Now let w be a reduced word in A with ¢(w) = 1. If w is non-
empty, then X (w) C U(a) by (2.1), where a is the first letter of w. But this means that
¢(w) acts non-trivially on the sets U(b), where b # a~!, contradicting that p(w) = 1.
Hence w is the empty word, and ¢ is injective as required. ([
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We show that this is in fact a generic situation in a non-elementary convergence
group, in the sense that loxodromic fixed point pairs are dense in the limit set. As a
preliminary, we first prove a one-sided version of this.

LEMMA 2.19. Let G be a convergence group on M such that AG has at least two
points. Then for every open subset U C M with non-empty intersection with AG, there
is a loxodromic element of G with a fixed point in U.

PROOF. Let U € M be an open subset, and pick limit points a € U and da’ # a.
Since a,a’ € AG, there are convergence sequences (g;) and (h;) whose attracting points
are a and o’ respectively. Let b and b be the repelling points of (g;) and (h;). Let V be a
neighbourhood of @’ whose closure is disjoint from that of U, and b,b' ¢ V (if b,V # ).

If a # b, then g; is loxodromic with one fixed point in U for sufficiently large 1.
Similarly, if @’ # ', then h; is loxodromic with a fixed point in V for sufficiently large
i. Since (g;) converges locally uniformly on M — {b} to the constant function on a, for
sufficiently large j, the element gjhigj_1 is a loxodromic with fixed point in g;a’ € U.

It thus remains to consider only the case that = b and o/ = /. Then hU C V
for sufficiently large i, and likewise g;V C U for sufficiently large j. Hence g;h;,U C U,
whence g;h; is loxodromic with a fixed point in U.

0

FIGURE 2. An illustration of Lemma 2.19. From left to right: the case
when a # b, the case when a’ # b/, and the case when a = b and o/ = V.

THEOREM 2.20. Let G be a convergence group on M. For any disjoint open subsets
U and V' that have non-empty intersection with AG, there is a loxodromic element g € G
with Py € U and Ny € V.

PROOF. By Lemma 2.19, there are loxodromic elements g and h with P, € U and
P, e V. If Ny = By, or Nj, = Py, then the fixed points of g and h coincide, and so g is
a loxodromic with endpoints in U and V. Suppose otherwise then, that the fixed points
of g and h are distinct from one another. Then by Lemma 2.17, k = ¢g"h™" yields a
loxodromic element with P, € U and Ni € V, for large enough n. U

The density of loxodromic fixed point pairs gives us the aforementioned dichotomy
for subgroups of a convergence group.

COROLLARY 2.21 (Tits’ alternative). Let G be a convergence group, H < G a sub-
group. If H is non-elementary, it contains a non-abelian free subgroup.
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PROOF. Since H is nonelementary, AH C AG is uncountable. In particular, AH
contains at least four points. Picking disjoint neighbourhoods of these, we can apply
Theorem 2.20 to find a pair of loxodromic elements with distinct poles in AH. The
theorem now follows from Proposition 2.18. (|

2.3. Uniform convergence groups. We now analyse the behaviour of limit points
in the limit set of a convergence group in depth. A particularly important class of limit
points are the conical limit points, which are points that are well-approximated by orbits
of the group.

DEFINITION 2.22 (Conical limit point). Let G be a convergence group on compact
metrisable space M. A point p € M is called a conical limit point if there are distinct
points a,b € M and a sequence (g;) in G such that g;p — b and gi¢g — a for all
q € M —{p}.

EXAMPLE 2.23. If a and b are fixed points of a loxodromic element g, then the
sequences (g") and (¢g~") are witnesses to the fact that @ and b are conical limit points.

Replacing (g;) in the above with a convergence subsequence and taking inverses, it
is immediate that a conical limit point of a convergence group G is in fact a limit point
of G (that is, it is contained in AG). The origin of ‘conical’ in the name above is in
reference to a characterisation of such points in classical hyperbolic geometry. Suppose
that p € OH" is a point in the boundary of H", and G < Isom(H") is a discrete group of
isometries. A neighbourhood of a line in H™ tending to p is a exactly a cone in the upper
half space model, and p is a conical limit point of G if and only if there is an infinite
G-orbit contained in such a cone: see Figure 3 below for a crude illustration.

T

FIGURE 3. A conical limit point p in OH?, in the upper half plane model.
The dashed lines bound a uniform neighbourhood of the vertical geodesic
line that tends to p, and the dots are G-translates of a point 2 € H?.

DEFINITION 2.24 (Uniform convergence group). A convergence group on compact
metrisable space M is called uniform if every point of M is a conical limit point.

Of course, a uniform convergence group is necessarily minimal. The power of the
above definition lies in the fact that the dynamics of conical limit point is very con-
strained. That is, one has strong control over the types of elements and subgroups that
fix conical limit points.
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The following emphasises that conical points, when they actually are fixed points, be-
have like loxodromic fixed points. Indeed, one can think of conical limit points as points
in M that want to be loxodromic fixed points. We will see later that non-elementary con-
vergence groups are countable, and as such there can only be countably many loxodromic
fixed points, while their limit sets are uncountable.

PROPOSITION 2.25. Let G be a convergence group on M, and suppose that p € M
is fized by infinitely many elements (h;) of G. If p is a conical limit point, then hj is
loxodromic for some j € N.

PROOF. Let a # b be points and (g;) a sequence as in the definition of conical limit
point, so g;p — b and g;q — a for ¢ # p. We may pass to a convergence subsequence of
(gi); necessarily p is its repelling point and a is its attracting point.

Suppose first that for some j € N, there are infinitely many distinct conjugates
ki = gihjg; ! Thus we may pass to a convergence subsequence of (k;). Fix some
qg # p, and define p; = ¢g;p and ¢; = ¢;q. We have that k;p; = p;, — b,¢; — a,
and k;q; = g:hjq — a, as hjqg # p. It follows that a and b are the attracting and
repelling points of (k;). As a # b, the terms of this sequence are eventually loxodromic
by Exercise 2.11. Since h; is conjugate to k;, this implies that h; is in fact loxodromic.

On the other hand, suppose that for each j, there are finitely many distinct conjugates
gihjg; 1. We may thus pass to a subsequence of (g;) such that for each j € N, there is
i(j) € N, such that for i > i(j), the sequence (g;hjg; ') is constant. Define p: H — G
as p(hj) = gi(j)hjgi_(;), where H = {h;|j € N}. It is straightforward to check that ¢ is
injective.

Now let j € N. Observe that for i > i(j), we have ¢(h;)p; = gip, so ¢(h;)p; —
b. Similarly, ¢(hj)g; — a. There is thus a convergence subsequence of (¢(h;)) with
attracting and repelling points a # b. This, in turn, shows that the elements p(h;) are
eventually loxodromic by Exercise 2.11. Now h; is conjugate to ¢(h;), which shows h;
is loxodromic for sufficiently large j. U

FIGURE 4. Illustration of Proposition 2.25. Conjugating the h; by g;
distorts them enough to force them to eventually be loxodromic.
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As a basic consequence, there is no overlap between the sets of parabolic fixed points
and conical limit points for a convergence group.

COROLLARY 2.26. Let G be a convergence group on M. If p is a parabolic fized point,
then it is not a conical limit point. In particular, a uniform convergence group contains
no parabolic elements.

PROOF. If p is fixed by a parabolic element g € G, then it is fixed by the infinite
subgroup (g). By Proposition 2.25, ¢* is loxodromic for some i € Z, a contradiction. [

2.4. The space of triples. Starting with the boundary of a hyperbolic space, then
we can try to reconstruct the space by considering triples of points in the boundary,
viewed as vertices of ideal triangles. The subspace we get by taking ‘centres’ of these
triangles is roughly well-defined. This is captured in the following exercise.

EXERCISE 2.27. Let X be a proper §-hyperbolic metric space. Call a point z € X
a centroid for an ideal triangle T if x is a distance of at most 100 from each side of T'.
Show that every ideal triangle T" has at least one centroid, and the distance between any
two centroids is bounded by a constant depending only on §. (Hint: approximate T with
finite geodesic triangles, for which centroids are easy to find.)

In fact, when a group acts cocompactly on a hyperbolic space, the space of centroids
is more or less the entire original space. We can view this as a sort of strong visibility

property.

EXERCISE 2.28. Let X be a d-hyperbolic metric space with a non-elementary, co-
compact group action by isometries. Then there is some constant K > 0 such that every
point of X is a distance of at most K from a centroid of an ideal triangle in X.

Mimicking the above, we can reconstruct a sort of abstract model for the ‘interior’
of an arbitrary compactum.

DEFINITION 2.29 (Space of triples). Let M be a topological space. Write Oy(M) =
M3 — {(a,b,c)| #{a,b,c} < 3} for the space of distinct ordered triples of M, equipped
with the product topology. The space of triples of M is the space ©(M), obtained as the
quotient of Og(M) by the permutation action of the symmetric group on triples.

REMARK 2.30. When M is compact and metrisable, ©(M) is locally compact and
metrisable. If a group acts on M, then there is an obvious induced action on ©(M).

We will, for the sake of convenience, largely ignore the above formalism and refer
to elements of ©(M) as three-element subsets of M. Convergence groups and their
dynamical properties can be reformulated in terms of the topology of the action on the
space of triples. Of course, when M has fewer than three points, ©(M) is empty, so we
usually discard this case.

To build a dictionary between actions on M and ©(M), we will need to translate the
proper discontinuity condition back into information about sequences.

LEMMA 2.31. Suppose the action of G on O(M) is properly discontinuous, and x, —
Ty Yn —> Y, 2n — 2, with {x,y,z} € O(M). If (gn) is a sequence of distinct group elements
and (gnn), (Gnyn), and (gnzn) converge in M, at least two have a common limit point.
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PROOF. Suppose otherwise, so gnzn — @', gnyn — ¥, gnzn — 2/ with {2/,y/, 2"} €
O(M). Tt follows that the sequence {gnTn, gnyn, gnzn} — {2',y’, 2’} converges in ©(M).
As ©(M) is locally compact, {z,y,z} has a compact neighbourhood K. But then
glgn K N K is non-empty for all sufficiently large values of m and n, contradicting
proper discontinuity. O

LEMMA 2.32. Suppose the action of G on ©(M) is properly discontinuous, and let
Ty = T, Yn — Y,2n — 2z be such that {x,y,z} € O(M). If (9n) is a sequence in G
and a # b € M are such that gnxn, — a, gnyn — a, and gnz, — b, then (g,) has a
convergence subsequence with attracting point a and repelling point z.

PROOF. Let p # {x,y,z} and pass to a subsequence for which (g,p) and (g, 'p)
converge. By Lemma 2.31 applied to (x,), (z,), and (p), either g,p — a or g,p — b after
passing to a further subsequence. Suppose the latter is true, and pick some ¢ # a,b.
Pass again to a subsequence for which w, = g, 'c converges to w € M. Now either
{z,z,w} or {y,p,w} is a distinct triple: in each case apply Lemma 2.31 to (x,), (z,),
and (wy) or (yn),(p), and (wy,). In either case we get that (g,w,) converges to a or
b, but g,w, = ¢ # a,b, a contradiction. Hence g, converges pointwise to the constant
function at @ on M — {z}.

We must prove that this pointwise convergence is in fact uniform on compact subsets.
Let K C M —{z} be a compact subset and U C M an open neighbourhood of a. Suppose
that the convergence is not uniform, so that there is an infinite sequence (wy,) in K such
that g,w, ¢ U, After passing to a subsequence of (w,), we may assume w, — w € K.
We may pass to a further subsequence for which (g, w,,) converges.

Since z ¢ K and K is closed, w # z. This implies that g,w — a by pointwise conver-
gence, and hence that there is a neighbourhood V of w with b ¢ g,V for sufficiently large
n. Thus we can apply Lemma 2.31 to (x,), (2,,), and (wy,) to see that that g,w, — a or
gnwy, — b. In the former case, the fact that g,w, ¢ U immediately gives a contradiction,
while in the latter case, we also obtain a contradiction from the fact that w, € V for all
sufficiently large n. O

THEOREM 2.33. Let M be a compact metrisable space with at least three points, G
a group acting by homeomorphisms on M. Then G is a convergence group on M if and
only if the induced action on ©(M) is properly discontinuous.

ProOOF. We first prove the forward direction: suppose G is a convergence group on
M. Let K C ©(M) be a compact subset and (g;) is an infinite sequence of elements with
g:KNK # (. That is, there is a sequence ({z;,v;, z;}) in K such that {g;2;, givi, 9z} € K
for each i also. Passing to a subsequence, we may assume that {g;x;, giy;, gizi} converges
to a point {2',v/, 2’} in K, by compactness.

Now, as G is a convergence group, there is a convergence subsequence (g,) with
attracting point a and repelling point b. Without loss of generality, we may suppose that
x; and y; are not equal to b. It follows that 2/ = limg;z; = a and vy = limg;; = a,
contradicting the fact that 2’ and ¢y’ are distinct. Thus no such infinite sequence exists.

For the converse, suppose that G acts on ©(M) properly discontinuously. Let (g;)
be an infinite sequence of distinct elements of G. Let {z,y, 2} € ©(M). By Lemma 2.31,
there is some subsequence (gp,) and points a and b in M such that g,,z = a, gn,y — a,
and gn,z — b (after possibly relabelling). If a # b, then Lemma 2.32 completes the
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proof, so suppose otherwise, that a = b. Pick some ¢ # a and let w; = g;ilc. Passing to
a further subsequence we can assume w; — w and, after possibly relabelling, w # x,y.
But then gn,z, gn,y — a but g,,w; = c. Again (g,,) has a convergence subsequence by
Lemma 2.32. ([

As a consequence of this characterisation, we can deduce that the only uncountable
convergence groups arise in the trivial case of trivial convergence actions. One should
view this as a manifestation of the essentially discrete nature of these groups. Note that
this fact is certainly not obvious from the dynamical characterisation!

COROLLARY 2.34. If G is a non-elementary convergence group, then G is countable.

PROOF. Let G be a non-elementary convergence group on compact metrisable space
M. By definition AG C M has at least three points. Then by Proposition 2.33, G
acts properly discontinuously on ©(M), which is locally compact and metrisable. In
particular, ©(M) is locally compact, Hausdorff, and second countable. Since the action
is properly discontinuous and the space is locally compact, the stabiliser of any point
is finite. Moreover, the orbit of any point is discrete and second countable, and thus
countable. Thus the quotient of G by the kernel of its action on ©(M) is countable.
The result now follows form the fact that the action of G on M has finite kernel, as in
Remark 2.6. (]

As one might expect, more or less any dynamical criterion on a convergence group
can be rephrased in terms of more topological criterion on the space of triples. For
instance, being a uniform convergence group has the characterisation below; the proof is
somewhat long and we will not present it here.

THEOREM 2.35 ([Tuk98, Theorem 1A]). Let G be a convergence group on compact
metrisable space M. Then G is uniform if and only if the action of ©(M) is cocompact.

The latter condition is frequently given as the definition of a uniform convergence
group, as the notion is based on the behaviour of cocompact subgroups of Isom(H"). We
will see soon that, more generally, hyperbolic groups are uniform convergence groups on
the boundaries of spaces they act on geometrically.

3. Boundaries of hyperbolic groups

We finally turn the machinery developed in the previous section on groups acting on
hyperbolic spaces. The key observation linking the two theories is the following.

THEOREM 3.1. Let G be a group acting properly discontinuously by isometries on a
proper hyperbolic metric space X. Then the induced action of G on 0X is a convergence
action.

PROOF. Let X be a d-hyperbolic metric space with properly discontinuous isometric
G-action, and fix a basepoint z € X. If GG is finite there is nothing to prove, so suppose
otherwise. Take (g;) an infinite sequence of distinct elements of G. As the action is
proper, the sequence (g;z) is unbounded in X. After possibly passing to a subsequence,
there is some point a € 0X such that g;x — a, since X U 0X is compact.
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If for all sequences (b;) in 0X, we have ¢;b; — a, then (g;) is straightforwardly a
convergence sequence with attracting and repelling point a, and so we are done. Oth-
erwise, there is a sequence (b;) in 0X and ¢ € 0X such that ¢,,b; = ¢ with ¢ # a, for
some subsequence (gy,,). By compactness of X, we may pass to a further subsequence
for which b; converges to some point b € 9X. The claim is that (g,,) is a convergence
sequence with attracting point a and repelling point b.

We need to show that for any compact subset K C 90X — {b} and any neighbourhood
U of a, that g,, K C U for sufficiently large ¢. Let K be such a subset. As 0X is
Hausdorff, K is closed and, in particular, does not intersect every neighbourhood of b.
Without loss of generality, then, we may take K to be the complement of U(b,r) for
some r > 0. Suppose p ¢ U(b,r), so that (p,b), < r. Note that if ¢; — ¢, then for any
¢ > 0 we have the containment U(q;,r 4+ ¢) C U(q,r) for sufficiently large i. Thus there
is a sequence (y;) in X asymptotic to p with (y;, b;), < 2r for all 4.

Let » > 0 be large enough that U N U(c,r) = 0, which exists since X is normal
Hausdorff. The observation above implies that U(gy, b, 2r) C U(c,r) for sufficiently large
i. Thus (gn, T, gn,bi)z < 2r for large 7. It follows that, for 7 large enough, there is a point
z;i on a geodesic [gn,bi, gn, x| with d(z;, z) < 2r + 24.

Now we have

(ni¥js Zi) g,z < (Ini¥is nibi) g, = (Y bi)a < 2r,
where the first inequality comes from the fact that z; is on the geodesic [gn,bi, gn, 7],
the equality from the fact that G acts by isometries, and the last inequality from the
construction of (y;).

Combining these with the triangle inequality implies that (gn,y;, ©)g,.» < 6r+45. As
d(gn,y;, =) is unbounded while (gn,y;, T)g, » is bounded, we must have that (gn,y;, gn, )z
is unbounded in ¢. That is, for any ' > 0, there is ig such that (gn,y;, gn,z)s > r’ for
i > ip. Being that (gn,¥;)jen is asymptotic to gn,p, this means g,,p € U(a,r’). Choosing
r’ > 0 large enough so that U(a,r’) C U thus completes the proof. O

REMARK 3.2. It is open whether the converse of the above theorem holds. That
is, given a convergence group action of G on compact metrisable M, whether there is a
proper hyperbolic space X admitting a properly discontinuous action by isometries such
that 0X is G-equivariantly homeomorphic to M.

It is true that convergence groups admit reasonably nice actions on hyperbolic spaces
[Sun19|. However, the boundaries of these spaces do not recover the original compactum,
and the actions are generally not properly discontinuous.

The classification of convergence group elements gives a somewhat more straightfor-
ward proof of the classification of isometries of a proper hyperbolic space.

PROOF OF THEOREM 5.3: Let X be a proper hyperbolic metric space, g € Isom(X).
If g has unbounded orbits, then it must be an element of infinite order, and so (g) acts
properly discontinuously on X. Hence (g) is a convergence group on 0X. Every infinite
order element of (g) is parabolic or loxodromic in the sense of a convergence group on
0X, which coincides with the definitions for isometries of a hyperbolic metric space. [

Of course, a hyperbolic group acts as a convergence group on the boundary of any
Cayley graph, but more is true. We first need the following observation.
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EXERCISE 3.3. Let X be a proper hyperbolic metric space admitting a cocompact
group action by isometries. If X is unbounded, then X contains at least two points.

(Hint: use the fact that there is no non-trivial group action on the ray [0,00) by
isometries. )

THEOREM 3.4. Let G be a group acting geometrically on a proper hyperbolic metric
space X. Then G is a uniform convergence group on 0X.

PROOF SKETCH: Let X be a d-hyperbolic metric space that X acts on geometrically.
In the former case 9X is empty and there is nothing to prove. Suppose that G is infinite,
then. We know that G acts as a convergence group on 90X, since the action of G on X is
properly discontinuous. We need to show that every point of G is a conical limit point.

Let p € 0X be an arbitrary point. By Exercise 3.3, X contains at least two points,
so let a € 0X — {p}. Fix some z € X as a basepoint and let B C X be a compact set
with x € B and G- B = X. Let £ be a geodesic line through = with endpoints p and a.
Take (g;) to be the sequence of elements of G for which ¢g; B meets £.

As 0X is compact, we may pass to a subsequence of (g;) such that g;p converges
to a point b € 9X. We claim that the sequence (g;) and the points a and b serve as
witnesses to the fact that p is a conical limit point. For every ¢ > 0, picking y € ¢ far
enough from z in the direction of p ensures that x is between g;x and g;y. That is to say,
there is a sequence y; — p such that (g;x, g;yj). is uniformly bounded for j > 4. Since
9iy; — gip as j — oo, there is a neighbourhood of a excluding g;p for all 7. It follows
that b = lim g;p # a.

We will take for granted that g;a — a, as this is easier to prove. Let ¢ # p, a, and let
r = {a,q)y < oo. It follows from hyperbolicity that there is z € [a, g] such that d(z, z) <
r + 2J. But then z; = g,z is a point on a geodesic [g;a, giq] with d(g;z, giz) < r + 2.
As giz € ¢;B is uniformly close to the geodesic ¢, it follows that (g;x, g;q), is roughly
equal to d(z, g;x). This latter quantity tends to infinity as ¢ — oo, so that g;q lies in any
neighbourhood of a = lim g;x for sufficiently large i. That is, g;g — a as required. O

FIGURE 5. Illustration of the proof of Theorem 3.4
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DEFINITION 3.5. Let G be a hyperbolic group. Suppose that G acts geometrically
on a proper hyperbolic space X. The boundary 0G of G is the space 0.X.

The boundary exists for any hyperbolic group: one can take the Cayley graph with
respect to any finite generating set as the space X. Moreover, dG is well-defined up
to homeomorphism for a given hyperbolic group G. Indeed, the Milnor-Schwarz lemma
tells us that if X and Y are two proper hyperbolic spaces admitting geometric actions
by G with X hyperbolic, there is a G-invariant quasi-isometry X — Y. Since quasi-
isometries of proper hyperbolic spaces induce homeomorphisms of the boundary, there is
a G-equivariant homeomorphism 90X — 0Y whenever this is the case.

The previous theorem does have a converse, due to Bowditch, so that we have a
completely dynamical reformulation of hyperbolic groups [Bow98a|. However, it is much
more difficult to prove, so we only give a very rough sketch here.

THEOREM 3.6. Let G be a uniform convergence group of compact metrisable space
M. Then G is a hyperbolic group and M is G-equivariantly homeomorphic to 0G.

PROOF IDEA: Recall that we mentioned that a hyperbolic metric space X can be
recovered up to quasi-isometry from a quasi-conformal structure on its boundary 0X.
The idea is as follows: analysing the action of G on M, we can equip M with a ‘system
of G-invariant annuli’, that encode the structure of the group action. This is the key
place where the uniformity of the convergence action is used, which ensures that such a
system exists around each point.

A system of annuli is essentially a quasi-conformal structure on M, and we can use
it to construct a version of a cross-ratio on M. Now, a cross-ratio on M induces a G-
invariant quasi-metric on the space of triples ©(M), which one can show is hyperbolic.
One can then upgrade this quasi-metric to an actual G-invariant metric d on O(M).
Since G is a uniform convergence group on M, it acts geometrically on the hyperbolic
metric space (O(M),d). Thus 00(M) = M is G-equivariantly homeomorphic to G by
the observation before the theorem. (]

Using the machinery we developed in the previous section, we are now able to deduce
many strong facts about hyperbolic groups and their subgroups. First, we see that we
have a straightforward proof of the fact that every infinite order element of a hyperbolic
group is loxodromic.

PROOF OF THEOREM 1.4: By Theorem 3.4, G acts as a uniform convergence group
on 0G. By Corollary 2.26, G contains no parabolic elements. But every infinite order
element of G is parabolic or loxodromic by Lemma 2.9. O

We can also prove that hyperbolic groups contain no infinite torsion subgroups, as
promised earlier. We state a simple lemma beforehand.

LEMMA 3.7. Let H be an infinite subgroup of a uniform convergence group G. Then
AH contains at least two points.

PRrROOF. As H is infinite, AH is non-empty. Suppose that AH contains only a single
point p. Necessarily, H fixes p, which is a conical limit point of G. But any infinite set
fixing a conical limit point contains a loxodromic element by Proposition 2.25. It follows
that AH contains at least two points, the poles of this loxodromic, by Lemma 2.12. [
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THEOREM 3.8. Let G be a hyperbolic group. Then G contains no infinite torsion
subgroups.

PRrROOF. Let G be a hyperbolic group, so G is a uniform convergence group on 9G.
Let H < G be an infinite subgroup, so that AH C 9G is non-empty. By Lemma 3.7, AH
contains at least two points. When AH contains exactly two points, it has a finite index
cyclic subgroup by Exercise 2.15. Now if AH contains at least three points, then H is
non-elementary and so contains a non-abelian free subgroup by the Tits alternative for
convergence groups. O

Another consequence of the above argument is a strong version of Tits’ subgroup
dichotomy for hyperbolic groups. Note that there are examples of non-linear hyperbolic
groups, so the setting is really different to the original theorem of Tits.

THEOREM 3.9 (Tits’ alternative). Let G be a hyperbolic group, H < G a subgroup.
Then H is either virtually cyclic, or H contains a non-abelian free subgroup.

We saw in Proposition 4.13 of Chapter 2 that any compact metrisable space arises
as the boundary of a proper hyperbolic metric space. In contrast, we have already seen
that even the cardinalities of boundaries of hyperbolic groups are quite restricted, as the
group action requires the boundary to have some sort of uniform symmetry.

The topology of boundaries is, indeed, also very constrained, to the extent that in
(very) low dimensions, one can in fact classify exactly the spaces that arise as boundaries.
A majority of the work lies in some deep results about the topology of the boundary of
hyperbolic groups: they are always locally connected when they are connected, and they
contain no global cut points [Swa96]. The classification of one-dimensional continua then
gives the following.

THEOREM 3.10 (|[KKO00, Theorem 4]). Let G be a nonelementary hyperbolic group. If
O0G has dimension 0, then OG is a Cantor space. If OG is connected and has dimension
1, it is either a circle S, a Sierpiriski carpet, or a Menger sponge.

Note that these are all very regular spaces. Indeed, the circle is the only compact
manifold in dimension one, the Sierpiriski carpet is the universal plane curve, and the
Menger sponge is the universal curve.

More can be said about the groups with these low-dimensional boundaries. Free
groups act geometrically on trees whose boundaries are Cantor sets. Deep structural
results on splittings of groups of Stallings and Dunwoody actually imply the following.

THEOREM 3.11. Let G be a hyperbolic group with OG a Cantor set. Then G contains
a finite index non-abelian free subgroup.

Similarly, we have seen that fundamental groups of hyperbolic surfaces are natural
examples of hyperbolic groups with circle boundary. In fact, these turn out to be the
only such groups, up to finite index.

THEOREM 3.12 (|Gab92, Theorem 7.26]). Let G be a hyperbolic group with 0G = S*.
Then G acts geometrically on the hyperbolic plane H?.

This theorem combines the work of many authors, most notably Tukia |[Tuk88|,
and was also independently proven (with a completely different method) by Casson and
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Jungreis [CJ94]. In reality, the theorem is a little stronger: it says that any convergence
group action on the circle S! is conjugate in Homeo(S') to one induced by a properly
discontinuous action by isometries on the hyperbolic plane H?. Again, the proof is long
and complicated, but we give a very brief overview along the lines of Tukia—Gabai.

PROOF IDEA: Let G be a convergence group on S'. We extend this action to a
convergence group action on the disc D? by cutting up the disc using axes of loxodromic
elements. If G contains a simple axis (that is, an axis disjoint from all its conjugates,
then these axes cut the disc up into disjoint pieces that all meet the boundary circle, and
one can extend the action in a canonical way to the interior of the disc. Tukia showed
that this covers many cases, and the work of Gabai covers the rest of the cases. Once one
has this, we can pick a G-equivariant triangulation of the disc D?, which we can modify
to resemble H? by applying a conformal transformation of the disc. This is tantamount
to conjugating the original action by a homeomorphism of the circle. O

Embedding a Cantor set in a circle, one can actually deduce Theorem 3.11 from
the above. Indeed, the action of the group on the Cantor set can be extended to an
action on the circle, and the original group will act cocompactly on the convex hull of
this embedded Cantor set. The quotient is (up to passing to a finite cover) a surface
with boundary, which retracts onto a graph. Thus these groups have finite index free
subgroups.

Moving one dimension up, the analysis becomes apparently much more difficult. For
instance, the following still remains open after almost forty years.

CONJECTURE 3.13 (Cannon conjecture). Let G be a hyperbolic group with 0G = S2.
Then G acts geometrically on H3.

Similarly to how the classification of groups with S' boundary shows that groups
with Cantor set boundary acts geometrically on a convex subset of H?, a resolution
to the above conjecture would allow a description of the groups with Sierpinski carpet
boundary as those acting geometrically on a convex subset of H?. Indeed, a Sierpiriski
carpet boundary embeds into a sphere, with the holes as round circles. There are finitely
many orbits of these circles under the action of the group, and their stabilisers are
well-behaved hyperbolic subgroups with circle boundary (and so, they act geometrically
on H?). ‘Doubling’ the group along representatives of these finitely many conjugacy
classes of stabiliser subgroups yields a hyperbolic group containing the original, and
whose boundary is the entire sphere. Then, if the Cannon conjecture were true, we could
obtain an action of the original group on a convex subset of H? from this.

In even higher dimensions, the versions of this geometric conjecture are also open.
However, in high enough dimensions, techniques from surgery theory allow a resolution
to a sort of topological analogue.

THEOREM 3.14 (|[BLW10, Theorem A]). Let G be a torsion-free hyperbolic group with
0G = S™=1 where n > 6. Then G = w1 M, where M is an aspherical n-manifold with
M = R"™.

To conclude our discussion on boundaries, we state another result that emphasises
the regularity of boundaries of hyperbolic groups. It tells us that any boundary that
contains a subset homeomorphic to R™ is actually an n-sphere. This rules out any
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non-sphere manifolds arising as boundaries of hyperbolic groups. Note that the same
argument actually works for the limit set of any non-elementary convergence group.

THEOREM 3.15. Let G be a hyperbolic group and suppose that OG contains a subset
homeomorphic to an open subset of R™. Then OG is homeomorphic to the n-sphere S™.

PROOF. The idea is to use the convergence property and a well-chosen loxodromic to
show that G is the union of two open n-balls glued along their boundary. We will need
the generalised Schonflies theorem, which states that a bicollared topologically embedded
sphere in R™ separates it into two components, one bounded and one unbounded [Bro60)].
This is the higher dimensional version of the Jordan curve theorem.

Let U C 9G be a subset homeomorphic to R™. By Theorem 2.20, there is a loxodromic
element g € G with P;, N, € U. Let U, and U_ disjoint open neighbourhoods of P, and
Ny respectively, and let f: R" — Uy and f_: R" — U_ be homeomorphisms such that
f+(0) = P, and f_(0) = N4. Let By and By be the open balls of radius 1 and 2 in R"
respectively. We define V; = f, (B2) and V_ = f_(B1), which are neighbourhoods of P,
and N, respectively. Since (¢"") is a convergence sequence, there is m > 0 such that

(OG- V_) C V.

Let S = f_(0By), so that S is a sphere that is the topological boundary of V_ in
OG. There is some € > 0 such that S x [—¢,¢]| embeds in G also, so S is a bicollared
sphere. Of course, S C 0G — V_, so that ¢™S C V.. Now S’ = f;l(ng) C By is
a bicollared sphere in R™, and so by the generalised Schoenflies theorem separates R™
into two components, one bounded and homeomorphic to an open n-ball D™, the other
unbounded and homeomorphic to the complement of a closed n-ball in R™. Since 0G—V_
is compact (as a closed set in a compact Hausdorff space) whose topological boundary is
S, its image under f;l g™ is exactly the closure of the bounded component of R™ — S’.

Therefore G — V_ is homeomorphic to a closed n-ball. By construction, V_ is

homeomorphic to an open n-ball. The two sets share a topological boundary, which is
the (n — 1)-sphere S. Thus 0G = D" Ugn—1 D, = S", as required. O

4. Algorithms and computability

Finite presentations are inherently a tool for practical computation and combinatorial
manipulation. Accordingly, the most basic questions one can ask about them are related
to computability. The first three such questions were originally posed by Dehn in the
early twentieth century.

We will not concern ourselves with a precise notion of computability here: consider
the truth of a statement decidable if there is an algorithm (that is, a sequence of oper-
ations) one can perform which, after finitely many steps, will return that the statement
is either true or false. The word and conjugacy problems ask whether presentations can
allow us to meaningfully distinguish elements of the groups they define.

DEFINITION 4.1. Let P = (S| R) be a finite presentation. We say the word problem is
solvable in P if, given any two words w and v in S, the statement that w and v represent
the same element is decidable. Similarly, we say that the conjugacy problem is solvable
in P if the statement that w and v represent conjugate elements is always decidable.
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It is straightforward, by applying Tietze transformations, to see that having solvable
word or conjugacy problem is really a property of the group that a given finite presen-
tation defines, and is independent of the choice of finite presentation for that group.
Hence we may rightly call solvability of these problems group properties. Of course, the
word problem is a special case of the conjugacy problem, since the conjugacy class of the
identity contains only the identity.

REMARK 4.2. The word problem is always semi-decidable: there is an algorithm such
that, if w and v in fact do represent the same element, will eventually halt and return
true. Namely, one can in a naive way enumerate all words representing the identity in
a finite presentation, and observe that if w and v represent the same element, the word
w™ v will appear somewhere in this list. Of course, this list is infinite, so the algorithm
will never terminate if w and v represent different elements.

EXERCISE 4.3. Solve the word problem for finitely presented simple groups.

Typically harder, though not as obviously so, is the problem of distinguishing one
finite presentation from another.

DEFINITION 4.4. Let C be a class of groups. We say the isomorphism problem is
solvable in C if, for any two finite presentations P and @ of groups in C, the statement
that P and @) are presentations of isomorphic groups is decidable.

If one could solve the isomorphism problem over the class of all finitely presented
groups, then certainly one has a solution to the conjugacy (and hence, also word) problem,
as one can decide whether the presentation obtained by adjoining the desired conjugacy
relation gives a different group or not.

A landmark result, first achieved by Novikov [Nov55| and, independently, Boone
[Boo59] in the 1950s, provides a decidedly negative answer to all of these problems.

THEOREM 4.5. There is a finitely presented group with unsolvable word problem.

The proof of the above is quite difficult, and has deep ties to mathematical logic.
Before moving back to hyperbolic groups, we mention a particularly striking result ob-
tained independently by Adian and Rabin, around the same time as the Boone-Novikov
result above. They showed that determining whether finite presentation has essentially
any interesting property is undecidable.

We say that a group property P is a Markov property if there exists a finitely presented
group with P, and also a finitely presented group that is not a subgroup of any finitely
presented group with P. Among such properties are being finite, having solvable word
problem, and being hyperbolic.

THEOREM 4.6 ([LS77, Theorem IV .4.1]). Let P be a Markov property. It is undecid-
able whether any given finite presentation defines a group that has P.

As a contrast to the rather unpleasant situation one finds oneself in for finitely pre-
sented groups in general, hyperbolic groups have excellent computability properties. In
fact, all three of the above problems are solvable within the class of hyperbolic groups. In
the remainder of this section, we present a solution to the word problem. The conjugacy
problem also admits a solution that is not much more difficult, while the isomorphism
problem requires a large number of advanced tools to solve.
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DEFINITION 4.7 (Dehn presentation). A finite presentation P is called a Dehn pre-
sentation if any word in the presentation which represents the identity contains more
than half of a relator.

Dehn presentations are so named because they exhibit the key property possessed
by the standard presentation of higher genus surface groups which was used by Dehn
to solve the world problem in such groups. Indeed, having a Dehn presentation yields a
very easy solution to the word problem.

LEMMA 4.8. The word problem is solvable in a group with a Dehn presentation.

PROOF. Let (S| R) be a Dehn presentation for a group G, and let w be a word in S.
We may reduce the word w as follows: if there is a relator r = r17ry € R with £(r1) < £(r2)
and w contains ry as a subword, then let w’ be the word obtained from w by replacing
this instance of ro with ri . By construction £(w') < £(w), and w’ represents the same
element of G as w.

Applying such a reduction finitely many times, we obtain a word w” representing the
same element of G as w, none of whose subwords are more than half of a relator. Since
the presentation was a Dehn presentation, w” represents the identity if and only if it is
the empty word, deciding the problem. O

The solution to the word problem in hyperbolic groups is a consequence of the fact
that every hyperbolic group has a Dehn presentation. This not only shows that hyperbolic
groups are finitely presentable, but finitely presentable in a very effective way.

THEOREM 4.9. Let G be a hyperbolic group. Then G has a Dehn presentation.

PROOF. Let S be a finite generating set for G, so that X = I'(G, S) is d-hyperbolic.
Let £ > 0,A > 1,¢ > 0 be constants from Theorem 2.18 such that every k-local geodesic
is (A, ¢)-quasigeodesic, which exist since X is hyperbolic. Let R be the set of cyclically
reduced words in S with length at most max{2k, Ac}. We will show that (S'|R) is a Dehn
presentation for G.

Suppose that w is a word representing the identity in G. We may cyclically reduce
w, if it is not already cyclically reduced. Let p be the loop in X based at the identity,
obtained by following the edges corresponding to the letters of w. Consider first the case
that that p is a k-local geodesic. Then p is a (A, ¢)-quasigeodesic with length ¢(w). Since
the distance between the endpoints of p is zero, it follows that ¢(w) < Ac. Hence w € R.

Now if p is not a k-local geodesic, then w contains a minimal subword v of length
at most k whose corresponding subpath ¢ of p is not geodesic. Let ¢’ be a geodesic in
X with the same endpoints as ¢, and let u be the word corresponding to ¢’. Of course,
¢’ also has length at most k, As v was minimal, ¢ and ¢’ have no overlap, so vu™' is
cyclically reduced. Moreover as the concatenation of ¢ and ¢’ is a loop in X, the word
vu~! represents the identity. Finally, uv~! has length at most £(q) + £(¢') < 2k, so
vu~! € R. Moreover, {(u) < £(v) since ¢ was not a geodesic, so that w contains more
than half of a word in R as required. Thus, if (S| R) is a presentation, it is a Dehn
presentation.
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To conclude, observe that if w = wivw, and r = vu™!' € R, we have

w = wlvu_luwg

= wlvuflwflwluwg
= (wlrwl_l)(wluwg).

If, further, ¢(u) < £(v), then wjuws is a strictly shorter word than w. By a finite
induction, then, every word representing the identity in G may be written as a product
of conjugates of elements of R. Hence (S| R) defines a genuine presentation of G. O

COROLLARY 4.10. The word problem is solvable in hyperbolic groups.

REMARK 4.11. As it turns out, having a Dehn presentation is equivalent to hyperbol-
icity, though we do not prove it here: see [BH99, Theorem II1.T".2.6]. Thus, computability
is in some ways intrinsically tied to hyperbolicity.

EXERCISE 4.12. Solve the conjugacy problem in hyperbolic groups.

(Hint: Let w and v be cyclically reduced words, and suppose that they are conjugate
by u, so uwu~! = v. Take u to be such a conjugator with minimal length. If £(u) is much
larger than ¢(w) and ¢(v), the geodesic rectangle in a Cayley graph with sides labelled
by w,u"!, v, u is very long and thin. Use this to bound the length of such u, and hence
effectively decide whether two words are conjugate.)

5. Small cancellation theory

One of the original motivations driving the development of the theory of hyperbolic
groups was the so-called small cancellation theory, a collection of results and techniques
that had been taking shape over several decades beforehand. Small cancellation theory is
part of combinatorial group theory, the study of groups by their presentations. Though
the ideas are somewhat geometric in nature, the mathematics is mostly combinatorial;
hyperbolicity puts many of the results of the theory on a coherent geometric framework.

The main theme of small cancellation theory is the analysis of presentations where the
relators do not have significant overlap (hence the ‘small cancellation’). There are many
different ‘small cancellation conditions’; here, we state just one of the most common and
important among them.

DEFINITION 5.1 (Piece). Let (S| R) be a group presentation, and suppose that each
relator r € R is cyclically reduced. Suppose further that R is symmetrised, so that R is
closed under cyclic permutations and inverses of words.

A non-trivial word w in S is called piece of the presentation if w is a maximal common
prefix for two distinct relators in R.

DEFINITION 5.2 (C’()) small cancellation condition). Let (S| R) be a group presen-
tation, A > 0. We say that the presentation satisfies the C’(\) condition if, whenever w
is a piece of a relator r € R, we have £(w) < \(r).

Many (but far from all!) facts about groups satisfying the above classical small
cancellation condition have been subsumed by hyperbolic groups.

THEOREM 5.3. Let G = (S| R) be a finitely presented group, with the presentation
satisfying C'(\) for A < %. Then G is a hyperbolic group.
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We do not give a proof of the above theorem, as it would be too much of a diversion.
One should think of the % appearing in the statement with regards to classical geometry.
The tightest tiling of the Euclidean plane by regular polygons is that by triangles, with
at most six triangles touching each point; if one wants to put more triangles in, one has
to turn to the hyperbolic plane. Classical small cancellation theory inherently deals with
planar diagrams and their geometry, so this link is in some senses very explicit.

We now turn to a remarkable construction due to Rips, which allows one to generate
hyperbolic groups with many pathological properties [Rip82].

THEOREM 5.4 (Rips’ construction). Let Q be a finitely presented group. There is a
hyperbolic group G with 2-generated normal subgroup N = (z,y) <G such that G/N = Q.

PROOF. Let (S| R) be a finite presentation for @), with finite sets S = {s1,...,sn}
and R = {ry,...,ry}. For simplicity, suppose that S is symmetric. We write S’ =
S U {x,y}, where z and y are two additional letters. For each i = 1,...,n, define the
words in S’

J— . . /
tiz = SiTs; Loyigy®tl | py®
— . . /
tiy = Siys; 1xybla:yb’+1 . xybi,
and fori=1,...,m:
. . /
= rryCaye Tty

where a; < a} < b; <V, < ¢; < c,. Now let
R ={rl,...,"tiz, stz by, ooy by}
We define the group G via the presentation (S’| R’).

We first verify that G is hyperbolic. In fact, we will show that the presentation
given is a C’(1/6) presentation, and therefore hyperbolic. By the choice of the integers
above, the noise words that suffix each relator in R’ contain no pieces. Hence any piece
of a relator in R’ is a subword of some r € R. Hence, choosing our integers such
that min{a, — a;,b, — b;} > 100 and ¢}, — ¢; > 100 max{l(r)|r € R} ensures that the
presentation is C’(1/6).

Next, we show that N = (z,y) is a normal subgroup of G. Indeed, the relations ¢; ,
and ?;, guarantee that the conjugate of x or y by any of the generators s € S lies in
N. Since G is generated by S and {z,y}, it follows that N is normal in G. Lastly, G/N
has the presentation (S’ | R'U{z,y}). Applying Tietze transformations, one immediately
sees that this recovers @ = (S| R), as required. O

Let us give a couple of applications of the above to construct pathological subgroups
of hyperbolic groups. We say that a finite presentation has solvable membership problem
if there is an algorithm that can determine whether a given word represents an element
of a given finitely generated subgroup. Again, of course, this is independent of the choice
of finite presentation for a given group. The word problem is a special case of this.

COROLLARY 5.5. There is a hyperbolic group with unsolvable membership problem.

PROOF. Let @ be a finitely presented group with unsolvable word problem. Applying
the Rips construction to (), we obtain a hyperbolic group G with 2-generated normal
subgroup N such that G/N = Q. If the membership problem were solvable in G, then
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there would be an algorithm for deciding whether a word in a generating set for G
represents an element of N. But this yields a solution to the word problem in @, for an
element in @) is non-trivial if and only if it has a lift in G that is not in N. (]

COROLLARY b5.6. There is a hyperbolic group with a finitely generated subgroup that
is not finitely presentable.

PROOF. Let @ be a finitely presented group containing a finitely generated but not
finitely presentable subgroup P, for example a finitely presented group that contains the
lamplighter group ZZ. Applying the Rips construction to ), we obtain a hyperbolic
group G with @ as a quotient and finitely generated kernel N. Then the preimage K
of P in G under the quotient G — @ is generated by preimages of generators of P
together with N. As N is finitely generated, K is also finitely generated. However,
since N is normal, adding the generators of N as relators to any presentation of K
yields a presentation of P. Hence K cannot be finitely presented, as P is not finitely
presented. O

Note that it follows from more advanced methods that NV is not finitely presentable
whenever @) is infinite: one can show that G has cohomological dimension 2, and among
such groups any finitely presented normal subgroup is either free or has finite index in
G |Bie76, Theorem B|. However, since the kernel of the Rips construction is infinite and
never free, and if @) is infinite, it has infinite index.

6. Quasiconvex subgroups

The Rips construction illustrates that general finitely generated subgroups of hyper-
bolic groups may be quite poorly behaved. We will touch on a class of subgroups whose
intrinsic geometry somehow respects that of their ambient group, and are as a result
much better behaved. Recall that a subspace of a metric space is quasiconvex if any
geodesic with endpoints in the subspace is contained in a uniform neighbourhood of that
subset.

DEFINITION 6.1. Let G be a group with finite generating set S. We say that H < G
is quasiconver if there is 0 > 0 such that H is o-quasiconvex as a subspace of I'(G, S).

A priori quasiconvexity of a particular subgroup is dependent on the choice of gen-
erating set of the ambient group.

EXERCISE 6.2. Find a finitely generated group G and finitely generated subgroup
H < G such that H is quasiconvex with respect to one generating set but not another.

Note that we could equivalently define quasiconvexity in terms of actions: given G
acting on X geometrically, we say H < G is quasiconvex if there is a H-invariant subspace
Y C X such that H acts on Y geometrically. This definition is equivalent to the previous
by the Milnor—Schwarz lemma. Similarly to how the previous definition depended on the
choice of generating set, this one depends on the choice of action.

For a hyperbolic group, quasiconvex subgroups coincide exactly with the finitely
generated quasi-isometrically embedded subgroups. As a consequence, being quasiconvex
is independent of choice of generating set, as a change of finite generating set gives a
quasi-isometry.
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LEMMA 6.3. Let G be a hyperbolic group with finite generating set S, and H < G
a subgroup with finite generating set T'. Then H is quasiconvex in G if and only if the
inclusion map v: (H,dr) — (G,dg) is a quasi-isometric embedding.

PROOF. Fix finite generating sets S of G and T of H. Quasi-isometrically embed-
ded subspaces of hyperbolic metric spaces are quasiconvex by Lemma 3.6, giving the
backwards implication. Conversely, if (H,dr) is o-quasiconvex in I'(G, S) by Lemma3.4
implies that the inclusion H < G is quasi-isometry, with respect to the metric dg 2541.
After possibly enlarging 7' to T” include all of the elements finitely many elements h € H
with |h|g < 20 4 1, the identity map on H is a quasi-isometry of these two metrics.
Hence the inclusion map (H,d7) — (G,dg) is a quasi-isometric embedding. Since all
finite generating sets induce quasi-isometric embeddings, this proves the lemma. O

We also saw in Lemma 3.5 that quasi-isometrically embedded subsets of a hyperbolic
space are again hyperbolic. The above thus yields:

COROLLARY 6.4. Quasiconvex subgroups of hyperbolic groups are hyperbolic.

EXERCISE 6.5. Show that every finitely generated subgroup of a free group of finite
rank is quasiconvex.

EXERCISE 6.6. Show that being quasiconvex passes to finite index subgroups and
overgroups.

An important feature of quasiconvexity is its closure under intersections.

PROPOSITION 6.7. Let G be a hyperbolic group. If H and K are quasiconvex subgroups
of G, then sois HN K.

PROOF. Let S be a finite generating set for G and o > 0 be a quasiconvexity constant
for H and K. We will show that for any r > 0 there is R > 0 such that

N,(H) N N.(K) € Np(HNK).

Suppose otherwise, so that for each n € N there is an element x,, € N,.(H) NN, (K) with
ds(zn, H N K) > n. By definition, there are y,,z, € G for every n with the property
that |yn|g, |2nlg < 7, and ypx, = hy € H and 2,2, = k, € K. Rearranging, we have
that x,, = yglhn = z,jlkn.

Since there are only finitely many g € G with |g|g < r, we may pass to a subsequence
for which y, = y and 2, = z are constant. Hence we have that h,k,! = yz~! for all
n In particular, hpk, 1 = hlkl_l, and so hl_lhn = kl_lkn € HN K for all n. But then
xl_lxn = hl_lyyflhn = hl_lhn € HN K, so that z, € z1(H N K). This means that
ds(zn, HN K) < |z1|g, a contradiction for large enough n. This proves the claim.

Now the claim gives us ¥ > 0 such that N,(H)NN,(K) C Nx(HNK). That HNK
is 3-quasiconvex as a subset of I'(G, S) then follows immediately from the fact that any
geodesic with endpoints in H N K lies in N,(H) and N, (K). O

Quasiconvexity also generally seems to be at odds with normality; we sketch a proof
of the following.

PROPOSITION 6.8. Let G be a hyperbolic group, H < G a quasiconvex subgroup. If
H is normal in G, then H is either finite or has finite index in G.
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PROOF (SKETCH): Suppose that H is infinite. Then AH is a closed non-empty
subset of G. As H is normal, for any x € 0G and g € G we have g - Hx = H(gz), so
that AH is G-invariant. But since the action of G on G is minimal, it must be that
0G = AH. Thus H has finite index in G. O

We note that the finite normal subgroups of a hyperbolic group G all arise in a
somewhat trivial way.

LEMMA 6.9. Let G be a hyperbolic group, and let K < G be the kernel of the action
of G on 0G. Then every finite normal subgroup of G is contained in K.

PROOF. Let F'<IG be a finite normal subgroup. The quotient map ¢: G — G' = G/F
is a quasi-isometry, so by Proposition 4.14 induces an equivariant homeomorphism of
boundaries 0G — 9G’. Now F acts trivially on dG’, so it must act trivially on 0G.
Hence F C K. O

EXERCISE 6.10. Let G be a hyperbolic group. Show that if H < G is an infinite
quasiconvex subgroup, then H has finite index in its normaliser Ng(H ).

7. Topological properties

Hyperbolic groups also have properties that make them particularly well-behaved
from the perspective of algebraic topology. Let us give a bit of background to contextu-
alise the upcoming results. For a topological space X, the (co)homology groups H;(X)
and H'(X) are incredibly important algebraic invariants that carry a wealth of topolog-
ical data. If X is, for instance, a finite simplicial or cellular complex, then these groups
can be computed explicitly (at least, in theory). Part of the power of algebraic topology
is that very many spaces of interest may be modelled by such finite complexes, and so
one can apply all of the wonderful tools of algebraic topology to study these spaces.

In much a similar fashion, there is a theory of group (co)homology, which allows
one to define the functors H; and H? on the category of groups. Analogously with the
situation for spaces, the groups H;(G) and H'(G) may encode a great deal of algebraic
information about the group G. As such, it is very useful to have finite models that allow
us to compute these groups. For a detailed overview of group (co)homology, see [Bro82].

For a (discrete) group G, a classifying space is a space BG for which m (BG) = G and
Tn(BG) = 0 for all n > 2. In the simplest case of (co)homology with integral coefficients,
the groups H;(G) and H*(G) are equal to the groups H;(BG) and H'(BG) respectively,
so BG serves as a model for G. In this section, we will show that torsion-free hyperbolic
groups have finite classifying spaces.

We note that the name ‘classifying space’ refers to the fact that such a space BG
classifies principal G-bundles: BG is the orbit space EG/G of a weakly contractible space
EG by a free and transitive G-action, and any principal G-bundle Y — Z is a pullback
of a map Z — BG over EG — BG. That is to say, principal G-bundles over Z are in
one-to-one correspondence with maps Z — BG.

We will make use of the following construction, which turns metric spaces into sim-
plicial complexes whose simplices coarsely approximate balls in the metric space.
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DEFINITION 7.1 (Rips complex). Let X be a metric space, r > 0. The Rips complex
on X with parameter r is the complex P, (X) whose vertex set is X and with an n-simplex
for every (n + 1)-tuple Y = {zo,...,2z,} with diam(Y") <r.

The Rips complex, taken with a suitably large parameter, is always contractible for
a hyperbolic metric space. It will therefore serve as a candidate for the universal cover
EG of our classifying space.

PROPOSITION 7.2. Let X be a §-hyperbolic space, X' C X a subspace with X =
Ni(X"). If r > 40 + 2 then P.(X') is contractible.

ProOOF. Let r > 4§ + 2. By Whitehead’s theorem, it suffices to show that the
homotopy groups of Y = P,(X') are trivial. Pick a basepoint z € X’ and suppose that
S™ — Y is a continuous map of a sphere into Y based at x. Since S™ is compact, the image
of this map lies in a finite subcomplex of Y. To show that the map is null-homotopic,
we will show that every finite subcomplex of Y is contractible.

Let L C Y be a finite subcomplex. We will homotope L to a strictly smaller complex
I’ by moving vertices of L towards the basepoint z. Repeating such a process finitely
many times, L is homotopic to a finite subcomplex of Y in which every vertex is a distance
of at most %r from z. Such a subcomplex is contained in a face of a single simplex of Y,
and is thus contractible.

Suppose that these is a vertex v € L with dx(z,v) > %r; we may take v attaining
a maximal such distance. Let z be a point on a geodesic [z,v] C X with dx(z,v) = 3r
and a point v € X’ with dx(z,v") < 1. We will show that if u € L is a vertex with

dx (u,v) <, then dx(u,v") <r also. This implies that if (v,z1,...,z,) is a simplex Y,
then so is (v/,21,...,2,). Let u € L be a vertex with dx(u,v) < r. By the four-point
inequality,

dx (ua U/) +dx (x7 2}) < maX{dX (U) U) +dx (:U, UI)? dx (u7 JI) +dx (U, 7}/)} + 24.

In either case, one can use the defining inequalities from the previous paragraph to
show that dx(u,v’) < 3r+ 26+ 1. Now since r > 44 + 2, this implies dx (u,v’) < r,
proving the claim. Thus the subcomplex L’ obtained by replacing every simplex with v
as a vertex with v’ is well-defined, and homotopic to L via the obvious affine maps in

(0,0, 21, .., Tn)- O
It is straightforward to apply the above to a hyperbolic group via its Cayley graph.

THEOREM 7.3. Let G be a hyperbolic group. There is a simplicial complex P with:
(i) P is finite dimensional, contractible, and locally finite;
(ii) G acts on P simplicially, cocompactly, with finite cell stabilisers;
(iii) the action is free and transitive on the vertex set of P
In particular, if G is torsion-free, then P/G is a finite classifying space for G.

Proor. Take X to be a Cayley graph of G with respect to some finite generating
set S. Then X is d-hyperbolic for some §, and X = N;(G), where G is viewed as the
vertex set of X. Pick r = 40 + 2, so that by Proposition 7.2, P = P.(QG) is contractible.

Given g € G there are at most 2|S|" elements h € G with dx(g,h) <, so that P is
necessarily finite dimensional and locally finite. The vertex set of P is exactly G, which
G acts on by (left) translation. This action is free and transitive, and extends to P by
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linearly interpolating across simplices. The action on P is necessarily simplicial, as it
preserves adjacency in X. Finally, if 0 = (z1,...,2,) is a simplex of P, then G permutes
x1,. ..,y faithfully. Hence the stabiliser of o has order at most n! = |S,|. O

Note that the above theorem tells us that P is what is known as a classifying space
for proper actions for any hyperbolic group G, often denoted EG, which is like an EG
but with finite cell stabilisers. It just so happens that when G is torsion free, there are
no finite subgroups, so that any EG as actually an EG.



CHAPTER 4

Groups acting on trees

1. Free constructions

There are some natural constructions in the category of groups that allow one to
build larger groups out of smaller ones. Of course, among these are things like direct
products (which is the categorical product) and, more generally, group extensions. We
are interested here in the more free constructions of this variety. The most basic of these
operations is the free product.

DEFINITION 1.1 (Free product). Let G and H be groups. The free product GxH of G
and H is the coproduct of G and H. That is, for any group K and any homomorphisms
p: G — K,v: H— K, there is a unique homomorphism f: G * H — K such that the

following commute:
H +——
%

Similarly to free groups, it is clean to define a free product in terms of a universal
property, but it is often useful to have a model to work with (and to show that a coproduct
actually exists!). We say a word in G LI H is reduced if it contains no consecutive pairs of
the form gg’ with g,¢’ € G or hh' with h,h' € H. That is, it strictly alternates between
letters in G and letters in H. There is an obvious reduction relation, and we can verify
that the group of equivalence classes of reduced words in G U H (with the operation of
concatenation of representatives) is in fact the free product G * H.

G —— G+« H

S

K

EXERCISE 1.2. Show that if G = (S| Q) and H = (T'| R) are presentations, then
G * H has the presentation (SUT |Q U R).

It can be useful to consider these free constructions in the context of topological
spaces. The Seifert—van Kampen theorem tells us that the fundamental group of the
wedge of two locally contractible spaces is a free product of the fundamental groups of
the two spaces. Of course, the wedge and the free product are both categorical coproducts
(in the category of pointed topological spaces and groups respectively), and the 71 map
is functorial. More generally, this theorem tells us that if we glue two spaces together
along some open path-connected subspace, the fundamental group is a pushout of the
corresponding fundamental groups. This brings us to the more general form of the free
product.

DEFINITION 1.3 (Amalgamated free product). Let G, H, and K be groups, and sup-
pose that ¢: K — G,v¢: K — H are injective homomorphisms. The free product of

64
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G and H amalgamated over K is the pushout of ¢ and . Namely, it is the group
G xx H such that for any group homomorphisms G — L and H — L, there is a unique
homomorphism G xx H — L such that the following diagram commutes:

K—*2 G

d |

H*)G*KH

\\)l
x_} L

In a slight abuse of notation, we usually suppress mention of the homomorphisms ¢
and v entirely, and treat K as a common subgroup of both G and H. Again, amalgamated
free products have an obvious presentation.

EXERCISE 1.4. In the notation of the above definition, show that G xx H has the
presentation of G x H with the added relations that ¢(k) = ¢(k) for each k € K.

Show that if G and H are finitely presented and K is finitely generated, then G *x H
is finitely presented.

Like in a free product, elements in amalgamated free products can also be written
in a unique minimal way as reduced words in G and H, though their description is a
little more involved. We call such expressions normal forms for elements. That such a
normal form exists once one fixes a transversal of the amalgamating subgroup in each of
the factors is a consequence of the following theorem. Note that in a free product, the
amalgamating subgroup is trivial, so that the transversals comprise the entirety of each
factors, and hence every reduced word is already a normal form.

THEOREM 1.5. Let G and H be groups and let K < G, H be a common subgroup.
Let ay,...,a, € Gxg H that alternate between tmages of either G or H. Ifay...a, =1,
then either

(a) n=1and a; =1;
(b) n>1 and there isi = 1,...,n such that a; is in the image of K.

The other main free construction of importance to infinite groups is known as the
HNN extension, named after its inventors Graham Higman, Bernard Neumann, and Han-
nah Neumann. It is a little harder to describe this construction with a universal property
(it is a homotopy colimit), so we give the traditional presentation-based definition.

DEFINITION 1.6 (HNN extension). Let G be a group, H < G be a subgroup, and
¢: H — G an injective homomorphism. The HNN extension G'x, is the group with the
presentation

(G, t|tht™ = p(h) for all h € H).
We call the subgroups H and ¢(H) the associated subgroups of the HNN extension, G
the base of the extension, and t is called the stable letter.

Of course, an HNN extension is in general not an actual group extension. Again
in analogy with spaces, HNN extensions correspond to fundamental groups of partial
mapping tori — spaces one obtains by gluing pieces of another space to itself, along a
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cylinder say. This goes some way to explaining why there is no simple universal property
for this construction, since there is no interval object in the category of groups. There
are also normal forms for elements in an HNN extension, similarly to amalgamated free
products. This is a consequence of the following.

THEOREM 1.7 (Britton’s lemma). Let G, be an HNN extension of G with associated
subgroups H and p(H), with stable letter t. Let go,...,gn € G and €1,...,e, = *+1.
Suppose that gottg1t°2 ... t°7g, = 1. Then either

(a) n=0 and go = 1;
(b) n > 0 and for some 1 < i <n— 1, we have ¢; = —&;+1 and either g; € H, if
g; = 1, or otherwise g; € p(H), ife; = —1.

ExaMPLE 1.8. Let G be a group, and ¢: G — G an automorphism. Then the HNN
extension G*, with associated subgroups G and ¢(G) = G is exactly the semi-direct
product G %, Z, where Z is the infinite cyclic subgroup generated by the stable letter.

ExAMPLE 1.9. The Baumslag-Solitar group BS(m,n) is an HNN extension Zx,,
where ¢ is an isomorphism of the subgroups mZ and nZ of Z.

It is a straightforward consequence of Britton’s lemma that the natural inclusion
of the base group into an HNN extension is an embedding. As such, HNN extensions
are a particularly useful tool for building embeddings of groups. For instance, they
play a significant role in the proof of Higman’s theorem, which states that a finitely
generated group is recursively presented (that is, there is an algorithm that computes all
the relators) if and only if it embeds into a finitely presented group |Hig61]. We give an
simpler example of such an application.

THEOREM 1.10. Every countable group embeds in a group generated by two elements.

PROOF. Let C' = {¢,|n > 0} be a countable group, and let F' = C x (a,b) be the
free product of C' with the free group on a and b. For simplicity, we assume that ¢y = 1
is the identity in C. Now the set {b’ab=*|i > 0} freely generates an infinite rank free
group H in (a,b), and similarly {c;a’ba=*|i > 0} also freely generates an infinite rank
free group K in C. Take G = F'*, to be an HNN extension of F', where p: H — K is
such that ¢(b'ab™") = c;a’ba™" for each i > 0. Of course, C' is embedded in F, which is
in turn embedded in G, so C' embeds in G. Moreover, G has the presentation

G = (F,t] tat™! = b, tblab~ it = ¢;a’ba"t i > 1),
from which it can be seen that a and t form a generating set. ([

The above allows one to equip any countable group with a proper metric, as a sub-
space of a 2-generated group it embeds in with respect to its word metric. It should not
be immediately obvious that this is possible, but that it is allows one to study the coarse
geometry of countable groups.

EXERCISE 1.11. Use Britton’s lemma to show that every finite order element of an
HNN extension G, is conjugate into G.
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2. Decompositions of groups

We will see that the free constructions above play a crucial role in understanding the
algebraic structure of infinite groups. First, we will need a definition.

DEFINITION 2.1 (Ends of spaces and groups). Let X be a topological space, and
K, C K9 C ... asequence of nested compact subsets, the union of whose interiors covers
X. An end of X is a nested sequence U; D Uy D ..., with each U; a connected component
of X — K;. If G is group with finite generating set S, then e(G) is the number of ends of
the space I'(G, 9).

The ends of space are straightforwardly seen to be independent of the choice of
exhaustion (Kj;). As a consequence, the space of ends is a quasi-isometry invariant
among proper metric spaces. It follows also that the ends of a group do not depend on
the choice of generating set. For a hyperbolic group G, the ends are exactly the connected
components of the boundary dG. The following may be reminiscent of a similar fact we
saw for the cardinalities of convergence groups.

EXERCISE 2.2. Show that a finitely generated group always has either 0,1,2, or
infinitely many ends.

Ends of groups were introduced independently by Freudenthal and Hopf. It is obvi-
ous that the finitely generated groups with zero ends are exactly the finite groups, as the
Cayley graph of every finitely generated infinite group contains is unbounded. Freuden-
thal and Hopf both also obtained the following characterisation of the two-ended groups:
see [DK18, Proposition 9.23] for an interesting differential-geometric proof.

THEOREM 2.3. Let G be a group with two ends. Then G contains an infinite cyclic
group of finite index.

The above admits a great variety of different proofs. While most are not especially
difficult or long, they are also not particularly easy or short, so we omit the proof here.
In the 60s, Stallings obtained the following striking result, which can be interpreted as
one of the first major theorems in geometric group theory.

THEOREM 2.4 ([Sta71l, Theorem 5.A.9]). A finitely generated group G has more than
one end if and only if G is an amalgamated free product G = H xx H' where K # H, H’
is a finite subgroup, or an HNN extension G = Hx, with finite associated subgroups.

3. Bass—Serre theory

Amalgamated free products and HNN extensions can be viewed as the most basic
examples of a much larger and unified theory of combination constructions, which is
intimately linked to the theory of group actions on trees. This is now called Bass—Serre
theory; it arose initially in Serre’s study of the group PSL2(Q,) — a p-adic linear group
whose Bruhat—Tits building is a tree — and was expanded on by Bass: see [Ser80].

Since its inception, Bass—Serre theory has become an increasingly essential tool in
geometric group theory and low-dimensional topology. A frequent use is to decompose
given infinite groups into simpler pieces glued together in certain ways, which are often
easier to understand individually.
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We will need a little bit of terminology to be able to proceed. Recall that for us, a
graph I' is a set of wvertices VI and edges ET', together with initial and terminal vertex
maps ¢, 7: ET' — VI, and en edge inversion map ~: EI' — ET', which has the property
that € = e, 1(€) = 7(e) and 7(&) = v(e).

DEFINITION 3.1 (Graph of groups). A graph of groups is a tuple G = (I';G_, ¢_)
where I' is a connected graph, G, and G, are groups for each v € VI' and e € ET', and
pe: Ge — G, is an injective homomorphism for each e € ET". We require that for each
e € ET', we have an equality of groups G, = Gz. We call the groups G, the vertex groups,
G the edge groups, and @, the edge morphisms.

Similarly to how one defines the fundamental group of a space as the set of loops
on a given basepoint up to homotopy, we can define a fundamental group of a graph
of groups as the set of loops in the underlying graph, with the extra data that paths
can pick up group elements from vertex spaces and that ‘homotopy’ will respect edge
morphisms. One should think of this construction as gluing together the vertex groups
along the edge groups in a way prescribed by the edge morphisms.

DEFINITION 3.2 (Fundamental group of a graph of groups). Let G = (I', G_,¢_) be
a graph of groups, and pick a basepoint vy € I'. Let F(G) be the quotient of the free
product F'(ET') * (kyeyr Gv), subject to the relations ee = ée = 1 and ep.(g)e = z(g)
for all e € ET and g € G.

The fundamental group m1(G,vo) of G based at vy is the subgroup of F(G) consisting
of (images of) words of the form gpe1g; ... eng, where e; ... e, forms a loop based at v,
and g; € Gy, for each i =0, ...,n, with v; = 7(e;) when i > 0.

Of course, the isomorphism type of the fundamental group of a graph of groups is
independent of the choice of basepoint in the underlying graph. Indeed, similarly to
fundamental groups of spaces, changing the basepoint amounts to conjugating in the
auxiliary group F(G). We will thus often suppress mention of the basepoint and simply
write m1G. We can now realise the constructions of the previous sectuin as exactly the
fundamental groups of one-edge graphs of groups.

EXAMPLE 3.3 (Amalgamated free product). Let I" be the graph consisting of a single
edge e with distinct endpoints u and v. Let G,,G,, and G, be groups with injective
homomorphisms ¢.: G. — G, and pz: G — G, and consider the graph of groups
G = (I',G_,¢_). Picking u as a basepoint, the only loops in I" are powers of ee. Then

F(G) = (Gy, Gy, e| 6906(9)6_1 = ve(9),9 € Ge),

so that m;G is exactly the subgroup generated by G, and eG,e~!, which is easily seen
to be isomorphic to Gy, g, Gs.

EXAMPLE 3.4 (HNN extension). Let I" be the graph consisting of a single edge e
with v = «(e) = 7(e). That is, I" is a single edge loop on a vertex v. Let G, be a group,
G. < G, asubgroup and ¢.: Ge — G, an injective homomorphism. Let G = (I', G_, ¢_)
be the corresponding graph of groups, considering z: G, — G, as the inclusion map of
G. as a subgroup. The loops in I' are exactly the powers of e, so in this case m.G = F(G).
Hence we have the presentation mG = (Gy,e|ege™ = ¢.(g),g9 € G.), from which we
can exactly see that m G = Gyx*,, .
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REMARK 3.5. The fundamental group of any graph of groups can be realised as an
iterated sequence of amalgamated free products and HNN extensions, by collapsing a
single edge or a loop at a time. Thus statements about fundamental groups of graphs of
groups can be proven by induction, with these single-edge cases as the base cases.

Fundamental groups of graphs of groups also admit normal forms, similarly to amal-
gamated products and HNN extensions. As in those settings, an immediate consequence
is that the vertex groups canonically embed into the fundamental group.

THEOREM 3.6. Let G = (I',G_,p_) be a graph of groups, and suppose that ey ... ey
is a loop in T based at vy € V. If goergi...engn =1 in m1(G,vo), where g; € Gy, and
v; = 7(€;), then either

(a) n=0 and go = 1; or
(b) thereisi=1,...,n —1 such that e; = €51 and g; € e, (Ge,).

EXERCISE 3.7. Show that if G is a graph of groups, any finite subgroup of m G is
conjugate into a vertex or edge group of G.

The universal cover of a graph, in the traditional sense, is a tree, and the action of
the fundamental group of the graph on this tree via deck transformations recovers the
original graph. Analogously, one can build a sort of equivariant universal covering tree for
a graph of groups, which admits an action of its fundamental group that will recover the
original graph of groups as a quotient. The action of a fundamental group of a graph via
deck transformations on its universal cover is free — it has no fixed points. By contrast,
the action of a fundamental group of a graph of groups on its universal covering tree will
in general have many point stabilisers, which will exactly recover the vertex and edge
groups of the original graph of groups.

DEFINITION 3.8 (Bass—Serre tree). Let G = (I', G_, ¢_) be a graph of groups. We
construct a graph Ty with a m;G-action, called the Bass—Serre tree of G.

The vertices of Ty will be the cosets of vertex groups of G in mG, and the edges of Tg
will likewise be cosets of edge groups of G in m1G. We must define the incidence relations
and inversion map. Given an edge gGe € Elg, where e € ET', we define gGe = gGe,
L(9Ge) = gG ey, and T(gGe) = gG1 (). The 1 G action on Ty is given by the permutation
action on cosets that comprise the vertices and edges of Tg.

It is straightforward to check that this action preserves the graph structure, and that
the stabilisers of vertices (respectively, edges) are exactly the conjugates in G of the
vertex (respectively, edge) groups of the graph of groups G. By definition, there is one
orbit of vertices for each vertex group of G and one orbit of edges for each edge group of
G. Moreover, an edge of Tg is incident to a vertex of Ty if and only if the corresponding
cosets of the edge group and vertex group are defined on an edge incident to a vertex in
I. Tt follows that, as a graph, Tg/m G is isomorphic to T.

We will not prove it here, but the Bass—Serre tree of a graph of groups is indeed a tree
in the sense that it is a connected graph with no non-trivial cycles. This construction
has an obvious converse.

DEFINITION 3.9 (Quotient graph of groups). Let G be a group and T a tree. Suppose
that G acts on T without edge inversions — that is, there is no e € ET and g € G such
that ge = € — so that I' = T'/G is a well-defined graph.
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Let s: I' — T be a section of the quotient map T — I'. For each v € VT, let G,
be the stabiliser in G of s(v) € VT, and likewise for each e € ET, define G, to be the
stabiliser of s(e) € ET. Moreover, the edge morphisms ¢, are defined as the inclusion
maps G, — G, of edge stabilisers into their adjacent vertex stabilisers (after possibility
conjugating, if one of the endpoints of an edge is outside the image of the section s). The
resulting graph of groups G = (I', G_, ¢_) is called the quotient graph of groups of T.

Note that acting without edge inversions is not a serious restriction, since we can
always subdivide an edge if there are edge inversions. The fundamental structure theorem
of Bass—Serre theory tells us that the these above constructions cohere; if G acts on a
tree T', then T is in fact the Bass—Serre tree of for the quotient graph of groups of T.

THEOREM 3.10. Let G be a group acting on a tree T without edge inversions, and
let G be the quotient graph of groups. Then G is isomorphic to m1G and there is a
G-equivariant isomorphism between T and the Bass—Serre tree Tg of G.

EXAMPLE 3.11. The modular group G = SLy(Z) admits an action on the hyperbolic
plane H? by Mobius transformations. Its fundamental domain is a triangle with one
vertex at infinity, and the group acts by translations and inversions permuting a tiling of
H? by copies of this triangle. Take the arc C' between the midpoint of the finite side of
this triangle and one of the adjacent vertices. The graph formed by the translates G - C
is a graph T with two orbits of vertices and one orbit of edges. As T consists of the
union of all finite edges of the tiling and each triangle has only one such edge, T is in
fact a tree. The vertex stabilisers are Z/6Z and Z/4Z, and the edge stabiliser is Z/27Z.
Theorem 3.10 yields G is isomorphic to the amalgamated free product Z/67Z x;, /22 7./47.

FIGURE 1. The tiling of the upper half plane corresponding to the action
of SLy(Z). The tree in blue is preserved, with fundamental domain in
orange.

EXERCISE 3.12. Show that the fundamental group of a graph of finite groups has a
finite index free subgroup. In particular, SL(2,7Z) has a finite index free subgroup.

The correspondence given by Bass—Serre theory can also be used to give some sleek
proofs of appealing statements.

THEOREM 3.13. If G acts freely on a tree, then G is a free group.
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PROOF. Let G act on a tree T freely, and write I' = T/G. The action is without
edge inversion, as otherwise it would fix a midpoint of an edge. Then by Theorem 3.10,
G = m1G, where G is the quotient graph of groups. Since the action of G was free, the
vertex and edge groups of G are trivial. It follows that m;G = m1[ is a free group. O

The following states that a subgroup of a free product is again a free product, whose
factors are a free group and conjugates of subgroups of the original free factors. It is
rather a pain to prove this without Bass—Serre theory.

THEOREM 3.14 (Kurosh subgroup theorem). Let G and H be groups, and let K be
a subgroup of the free product G x H. Then there are collections of subgroups {G;|i € I}
and {H;|j € J}, conjugate into G and H respectively, and X C G « H such that

K = < * Gi) x ( * Hj> + F(X).
icl jeJ

PROOF. Let T be the Bass—Serre tree of the free product G x H, viewed as the
fundamental group of the single-edge graph of groups with trivial edge group and vertex
groups G and H. Now G x H acts on T without edge inversion, so K does as well. Let
Tk be a minimal K-invariant subtree of T under this action. Then we see that K = 71/,
where K is the quotient graph of groups of Tx. The edge groups are trivial, since the
edge stabilisers in T were trivial. It follows from Theorem 3.10 that K is a free product
of the vertex groups of K together with mI", where I' = T /K. The vertex groups of K
are all contained in vertex stabilisers of the action of G * H on T, so they are conjugate
into G or H as required. O

4. Accessibility and further decompositions

The dictionary between graphs of groups and actions on trees provided by Bass—Serre
theory gives us a powerful language to speak about groups with. For instance, the rather
clunky statement of Stallings’ theorem on ends of groups may be restated thus:

THEOREM 4.1. If G is a finitely generated group with more than one end, then G
acts non-trivially on a tree with finite edge stabilisers.

If the vertex stabilisers of the action given by the above theorem are again many-
ended, then one can apply the theorem once more to obtain a more refined decomposition
of the original group. In theory, this process may never terminate; to say it does means
that there is a finite graph of groups with finite edge groups and zero- or one-ended
vertex groups.

DEFINITION 4.2 (Accessibility). Let G be a finitely generated group. We say that G
is accessible if it acts on a tree T' with finite edge stabilisers, vertex stabilisers with at
most one end, and T/G a finite graph.

One would hope that this is true for every finitely generated group, but there are
many examples, the first of which was constructed by Dunwoody, of finitely generated
groups that are not accessible. Nevertheless, most countable groups one might care about
are accessible.

THEOREM 4.3 (|Dun8&5, Theorem 5.1]). Every finitely presented group is accessible.
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In particular, we saw that hyperbolic groups are finitely presented, hence accessible.
Note that the statement of Dunwoody is actually a little more general: being finitely
presented is in some sense a homotopical condition, and the statement holds for groups
satisfying a (strictly weaker) homological analogue of finite presentability.

To prove the above, one constructs finite cut sets on the universal cover of a Cayley
complex that are in some sense minimal. Dual to this collection of cut sets is a tree that
is acted on by the group in the appropriate way.

Knowing that a group is accessible reduces many questions one could ask about
that group to its finitely many one-ended ‘factors’. For hyperbolic groups, the vertex
groups in a graph of groups with finite edge groups are in fact quasiconvex, and so are
also hyperbolic. Thus many things one could ask about the class of hyperbolic groups
reduces to questions about one-ended hyperbolic groups (that is, hyperbolic groups with
connected boundaries). For these, the next least complicated possible decompositions
after splittings over finite groups are also understood: those where the edge groups are
two-ended. Again, one can detect the splitting directly from connectedness properties of
the boundary; recall that a local cut point of a topological space is one that disconnects
at least one of its neighbourhoods.

THEOREM 4.4 ([Bow98b, Theorem 6.2]). A one-ended hyperbolic group G acts on a
tree with two-ended edge stabilisers if and only if OG contains a local cut point.

The proof involves constructing a tree out of the local cut point structure of 0G,
which admits a canonical G-action. This resulting splitting is usually known as the JSJ
decomposition of G, in rough analogy with an identically named decomposition in the
theory of 3-manifolds.
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