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1 The Rips construction

We prove the statement from the end of the previous lecture.

Theorem 1.1. Let Q be a finitely presented group. There exists a hyperbolic group G
with 2-generated normal subgroup N = (x,y) < G such that G/N = Q.

Proof. Let (S|R) be a finite presentation for (), with finite sets S = {s1,...,s,} and
R ={ry,...,rm}. For simplicity, suppose that S is symmetric. We write S" = SU{z,y},

where z and y are two additional letters. For each i = 1,...,n, define the words in S”:
. . /
lig = Sixs;liﬂya%yaﬁl ooy
—1,. bi.. bi+l v,
tiy = Siys; vy 'Y + R TN
and fori=1,...,m:
i il /
v = rawyCiay© Tt oy,
where a; < a} < b; <V, <¢; <c,. Now let
/ / /
R ={rl,....;mtizs s tna iy, - oyt

We define the group G via the presentation (S"| R').

We first verify that G is hyperbolic. In fact, we will show that the presentation
given is a C’'(1/6) presentation, and therefore hyperbolic. By the choice of the integers
above, the noise words that suffix each relator in R’ contain no pieces. Hence any piece
of a relator in R’ is a subword of some r € R. Hence, choosing our integers such
that min{a, — a;,b, — b;} > 100 and ¢, — ¢; > 100 max{l(r)|r € R} ensures that the
presentation is C’(1/6).

Next, we show that N = (x,y) is a normal subgroup of G. Indeed, the relations ¢;
and t¢;, guarantee that the conjugate of x or y by any of the generators s € S lies in
N. Since G is generated by S and {z,y}, it follows that N is normal in G. Lastly, G/N
has the presentation (S’ | R'U{xz,y}). Applying Tietze transformations, one immediately
sees that this recovers @ = (S| R), as required. O



2 Quasiconvex subgroups

The Rips construction illustrates that general finitely generated subgroups of hyperbolic
groups may be quite poorly behaved. We will touch on a class of subgroups whose
intrinsic geometry somehow respects that of their ambient group, and are as a result
much better behaved. Recall that a subspace of a metric space is quasiconvex if any
geodesic with endpoints in the subspace is contained in a uniform neighbourhood of that
subset.

Definition 2.1. Let G be a group with finite generating set S. We say that H < G is
quasiconvez if there is o > 0 such that H is o-quasiconvex as a subspace of I'(G, S).

A priori quasiconvexity of a particular subgroup is dependent on the choice of gener-
ating set of the ambient group.

Exercise 2.2. Find a finitely generated group G and finitely generated subgroup H < G
such that H is quasiconvex with respect to one generating set but not another.

Note that we could equivalently define quasiconvexity in terms of actions: given G
acting on X geometrically, we say H < G is quasiconvex if there is a H-invariant subspace
Y C X such that H acts on Y geometrically. This definition is equivalent to the previous
by the Milnor-Schwarz lemma. Similarly to how the previous definition depended on the
choice of generating set, this one depends on the choice of action.

For a hyperbolic group, quasiconvex subgroups coincide exactly with the finitely
generated quasi-isometrically embedded subgroups. As a consequence, being quasiconvex
is independent of choice of generating set, as a change of finite generating set gives a
quasi-isometry.

Lemma 2.3. Let G be a hyperbolic group with finite generating set S, and H < G a
subgroup with finite generating set T. Then H is quasiconvex in G if and only if the
inclusion map v: (H,dr) — (G,dg) is a quasi-isometric embedding.

Proof. Quasi-isometrically embedded subspaces of hyperbolic metric spaces are quasicon-
vex, giving the backwards implication. For the forwards direction, any coarsely connected
quasiconvex subspace of a metric space is quasi-isometrically embedded, with respect to
the Rips metric. Since finitely generated subgroups are coarsely connected, the inclusion
map in the statement is a quasi-isometric embedding. ]

We also saw earlier in the course that quasi-isometrically embedded subsets of a
hyperbolic space are again hyperbolic. The above thus yields:

Corollary 2.4. Quasiconvex subgroups of hyperbolic groups are hyperbolic.

Exercise 2.5. Show that every finitely generated subgroup of a free group of finite rank
is quasiconvex.

Exercise 2.6. Show that being quasiconvex passes to finite index subgroups and over-
groups.



An important feature of quasiconvexity is their intersection closure.

Proposition 2.7. Let G be a hyperbolic group. If H and K are quasiconvex subgroups
of G, then so is HN K.

Proof. Let S be a finite generating set for G and o > 0 be a quasiconvexity constant for
H and K. We will show that for any » > 0 there is R > 0 such that

N,(H) N N.(K) C Np(HNK).

Suppose otherwise, so that for each n € N there is an element x,, € N,(H)N N, (K) with
ds(zpn, H N K) > n. By definition, there are y,,z, € G for every n with the property
that |yn|g, |2n]g < 7, and ypxy, = hy € H and 2,2, = k, € K. Rearranging, we have
that =, = yglhn = z;lkn.

Since there are only finitely many g € G with |g|g < r, we may pass to a subsequence
for which y,, = y and z, = z are constant. Hence we have that h,k,! = yz~! for all
n In particular, hnkgl = hlkl_l, and so hl_lhn = kl_lkn € HnN K for all n. But then
xl_lccn = hl_lyy_lhn = hl_lhn € HN K, so that z, € x1(H N K). This means that
ds(zn, HN K) < |z1|g, a contradiction for large enough n. This proves the claim.

Now the claim gives us ¥ > 0 such that Ny (H)NN,(K) C Ny(HNK). That HNK
is Y-quasiconvex as a subset of I'(G, S) then follows immediately from the fact that any
geodesic with endpoints in H N K lies in N,(H) and N, (K). O

Quasiconvexity also generally seems to be at odds with normality; we sketch a proof
of the following.

Proposition 2.8. Let G be a hyperbolic group, H < G a quasiconvex subgroup. If H is
normal in G, then H is either finite or has finite index in G.

Proof sketch: Suppose that H is infinite. Then AH is a closed non-empty subset of 0G.
As H is normal, for any z € G and g € G we have g - Hx = H(gx), so that AH is
G-invariant. But since the action of G on OG is minimal, it must be that 0G = AH.
Thus H has finite index in G. O

We note that the finite normal subgroups of a hyperbolic group G all arise in a
somewhat trivial way.

Lemma 2.9. Let G be a hyperbolic group, and let K <t G be the kernel of the action of
G on 0G. Then every finite normal subgroup of G is contained in K.

Proof. Let F <1 G be a finite normal subgroup. The quotient map ¢: G — G’ = G/F is
a quasi-isometry, so induces an equivariant homeomorphism of boundaries 0G — 9G'.
Now F' acts trivially on G, so it must act trivially on G. Hence F' C K. O

Exercise 2.10. Let G be a hyperbolic group. Show that if H < G is quasiconvex, then
H has finite index in its centraliser Cq(H).



3 Topological properties

Hyperbolic groups also have properties that make them particularly well-behaved from
the perspective of algebraic topology. Recall that, for a (discrete) group G, a classifying
space is a space BG for which m(BG) = G and 7, (BG) = 0 for all n > 2. We will show
that torsion-free hyperbolic groups have finite classifying spaces. We will make use of
the following construction, which turns metric spaces into simplicial complexes, whose
simplices in some sence coarsely approximate balls in the metric space.

Definition 3.1 (Rips complex). Let X be a metric space, r > 0. The Rips complex on
X with parameter r is the complex P.(X) whose vertex set is X and with an n-simplex
for every (n + 1)-tuple Y = {zo,...,z,} with diam(Y") <r.

The Rips complex, taken with a suitably large parameter, is always contractible for
a hyperbolic metric space. It will therefore serve as a candidate for the universal cover
EG of our classifying space.

Proposition 3.2. Let X be a -hyperbolic space, X' C X a subspace with X = N1(X').
If r > 46 + 2 then P.(X') is contractible.

Proof. Let r > 45 + 2. By Whitehead’s theorem, it suffices to show that the homotopy
groups of Y = P.(X’) are trivial. Pick a basepoint z € X’ and suppose that S™ — Y is
a continuous map of a sphere into Y based at x. Since S™ is compact, the image of this
map lies in a finite subcomplex of Y. To show that the map is null-homotopic, we will
show that every finite subcomplex of Y is contractible.

Let L C Y be a finite subcomplex. We will homotope L to a strictly smaller complex
I’ by moving vertices of L towards the basepoint z. Repeating such a process finitely
many times, L is homotopic to a finite subcomplex of Y in which every vertex is a distance
of at most %7" from z. Such a subcomplex is contained in a face of a single simplex of Y,
and is thus contractible.

Suppose that these is a vertex v € L with dx(x,v) > %r; we may take v attaining
a maximal such distance. Let z be a point on a geodesic [z,v] C X with dx(z,v) = %r
and a point v € X’ with dx(z,v") < 1. We will show that if u € L is a vertex with

dx (u,v) <7, then dx(u,v’) < r also. This implies that if (v,z1,...,2,) is a simplex Y,
then so is (v/,21,...,2,). Let u € L be a vertex with dx(u,v) < r. By the four-point
inequality,

dX(’U,, U/) + dX(l',U) < max{dx(uﬂj) + dX(.%’, Ul)vdX(ua 1’) + dX(’U,’U,)} + 24.

In either case, one can use the defining inequalities from the previous paragraph to
show that dx(u,v") < %r + 26 + 1. Now since r > 44 + 2, this implies dx(u,v') < r,
proving the claim. Thus the subcomplex L’ obtained by replacing every simplex with v
as a vertex with v’ is well-defined, and homotopic to L via the obvious affine maps in
(0,021, .., xy). O

It is straightforward to apply the above to a hyperbolic group via its Cayley graph.



Theorem 3.3. Let G be a hyperbolic group. There is a simplicial complex P such that:
1. P is finite dimensional, contractible, and locally finite;
2. G acts on P simplicially, cocompactly, with finite cell stabilisers;
3. the action is free and transitive on the vertex set of P

Hence if G is torsion-free, then P/G is a finite classifying space for G.

Proof. Take X to be a Cayley graph of G with respect to some finite generating set S.
Then X is d-hyperbolic for some d, and X = N;(G), where G is viewed as the vertex set
of X. Pick r =46 + 2, so that by Proposition 3.2, P = P,(G) is contractible.

Given g € G there are at most 2|S|" elements h € G with dx(g,h) < r, so that P is
necessarily finite dimensional and locally finite. The vertex set of P is exactly G, which
G acts on by (left) translation. This action is free and transitive, and extends to P by
linearly interpolating across simplices. The action on P is necessarily simplicial, as it
preserves adjacency in X. Finally, if 0 = (z1,...,2,) is a simplex of P, then G permutes
Z1,...,x, faithfully. Hence the stabiliser of o has order at most n! = |S,,|. O]

Note that the above theorem tells us that P is what is known as a classifying space
for proper actions for any hyperbolic group G, often denoted EG, which is like an EG
but with finite cell stabilisers. It just so happens that when G is torsion free, there are
no finite subgroups, so that any EG as actually an EG.
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