Geometric group theory
Lecture 6

Lawk Mineh

November 2025

1 Negative curvature in groups

In this section we will begin to apply the machinery we have developed for metric negative
curvature to group theory. Hyperbolic groups are the groups that act geometrically
on proper hyperbolic metric spaces. Remarkably, this entirely geometric condition has
incredibly strong consequences for the algebraic structure of these groups.

The class of hyperbolic groups includes many groups of classical interest to group
theorists, topologists, and geometers. As well as providing a convenient and clarifying
framework for understanding groups with ‘negative curvature’, the study of hyperbolic
groups has paved the way for some deep insights into and novel results on these groups.

Definition 1.1 (Hyperbolic group). A group is called hyperbolic if it admits a geometric
action on a proper hyperbolic metric space.

Equivalently, we may say a finitely generated group is hyperbolic if it has a finite
generating set with respect to which the Cayley graph is a a hyperbolic metric space
by invoking the Milnor—-Schwarz lemma. We saw in the first lecture that quasi-isometry
type of a Cayley graph is preserved by a change of finite generating set, and in the fourth
lecture that hyperbolicity is preserved by quasi-isometries. Hence the hyperbolicity of any
such Cayley graph is independent of which finite generating set is chosen for a hyperbolic

group.

Example 1.2.

e The Cayley graph of any finitely generated free group with respect to a free gener-
ating set is a simplicial tree, and hence 0-hyperbolic. Therefore finitely generated
free groups are hyperbolic.

e If M is a closed hyperbolic n-manifold, its fundamental group w1 M acts geomet-
rically on its isometric universal cover H". We saw earlier that H" is a hyperbolic
metric space, so m M is a hyperbolic group.

e Every finite group is hyperbolic as it is quasi-isometric to a point, and every vir-
tually cyclic group is hyperbolic as it is quasi-isometric to a line. We call these
elementary hyperbolic groups — they are the only virtually abelian ones — and all



others non-elementary. We will later see that all non-elementary hyperbolic groups
contain non-abelian free subgroups, so are very far from being virtually abelian.

e So-called ‘random groups’ are hyperbolic. More precisely, one can formulate models
of randomness that allow one to choose a finite presentation ‘uniformly randomly’
in some sense. In most of these models, the ‘generic’ group is almost always a
hyperbolic group.

e A group given by a presentation with relators that do not overlap too much is
hyperbolic. Such ‘small cancellation’ groups are a rich source of examples in geo-
metric group theory, and can exhibit somewhat peculiar properties. We will discuss
this class of groups a little later in the course.

Example 1.3. The Cayley graph of Z" with respect to the standard generators is not a
hyperbolic metric space for any n > 2, and so Z" is not a hyperbolic group.

We will see there is a sort of strong converse to the above example, in that hyperbolic
groups cannot contain higher rank abelian groups. This, among other things, will be a
consequence of the following important fact.

Theorem 1.4. FEvery infinite order element of a hyperbolic group is loxodromic.

Proof. Let S be a finite generating set for the group G such that I'(G, S) is §-hyperbolic,
and let g be an element of infinite order. Let N be the number of group elements h with
|hlg < 26, of which there are finitely many. We will show that for any R € N, we have
! gt | ¢ = R. It follows immediately that g" is a loxodromic, as it implies

In—m| <ds(g",g™) < lglg - In—ml.
That ¢ is a root of a loxodromic then implies g is a loxodromic, so it remains only to
prove the claim.

Let R € N and take k € N large enough so that ‘gk‘s > 4R+26+1. Now if |¢"|¢ < R,
then the geodesic [1, g*] and its g"-translate [¢7, g"1*] are at length at least 4R + 24 and
have endpoints at most R apart. We leave it as a straightforward exercise in hyperbolic
geometry that the midpoint of the latter path is a distance of at most 2§ from a point on
the former path that is at most %R away from the midpoint of the former path. There
are at most RN such points, by the definition of N. As ¢ does not fix any points in
I'(G,S), the midpoints of [¢", ¢g"**] must all be distinct. By the pigeonhole principle,
then, there is some n(R) < RN +1 with ‘g"(R) ‘S > R. It follows also that R < n(R)|g|g.

Suppose now that ‘gRN‘ < R — ¢ for some € > 0. Let T' = max{‘gﬂs |0 <i< RN}

and N’ = ERNT]. Then for any n > N’, we have
19" < 9™ |+ 19%s < pR—pe+T < pR,

where p,q € Z are such that n = pRN + g and 0 < ¢ < RN. Let Q = N'|g|g, so that
n(Q) > N'. Tt follows that ‘g”(Q)‘S < %R < @, while the construction of n(Q) gives
that !g”(Q) ’S > (). This is a contradiction, so we must have |gRN} >R O



The geometric condition of hyperbolicity has some strong implications for the alge-
braic structure of the group. The beginning of this study sees that centralisers of infinite
order elements are always virtually cyclic.

Theorem 1.5. Let G be a hyperbolic group. If g € G is an element of infinite order,
then [Ca(g) : (9)] < 0.

Proof. Take S be a finite generating set for G, so that I'(G, S) is d-hyperbolic. Let A > 1
and ¢ > 0 be constants for which n — ¢" is a (), ¢)-quasi-isometry Z — I'(G,S). We
consider this map a quasi-geodesic by precomposing it with a quasi-isometry R — Z. Let
M = M(\,¢,d) be the constant obtained by the Morse Lemma.

Let h € Cg(g) be an arbitrary element of the centraliser of g and write D = |h|g.
Since g has loxodromic, there is N € N such that dg(1,¢") > 20 +2M + D for all
n > N. Let n > N and choose geodesics p1 = [1,9%"],p2 = [h,hg*"],q1 = [1,h], and
g2 = [¢?", hg®"]. We may take ps to be a h-translate of p;. These four geodesics form a
geodesic rectangle in I'(G, S), which is 26-slim as I'(G, S) is d-hyperbolic.

By Theorem 1.4, the points {1,g,...,¢*"} are the image of a (), c)-quasi-geodesic.
Therefore by the Morse Lemma, they lie in an M-Hausdorff neighbourhood of p;. As
p2 = hpy, the same is true for {h, hg,...,hg?"} and py. Let y; be a point on p; with
ds(y1,9"™) < M. By the choice of n, we have dg(y1,q;) > 20 for i = 1,2. Therefore by
the slimness of the rectangle, there is a point y2 be a point on ps with dg(y1,y2) < 26.
Now there some index j = 0,...,2n such that dg(yz, hg’) < M.

Combining all of this, we have dg(hg’,g") < 2M + 25. Using that h commutes with
g, this implies dg(h,¢g"7) < 2M + 26. In other words, h € a{g), where a € G is such
that |a|g < 2M 4 26. As S is a finite set, there are only finitely many such elements.
Thus (g) has finite index in C(g) as required. O

An immediate consequence of this is that hyperbolic groups contain no subgroups
isomorphic to the Baumslag-Solitar group BS(m,n) = {(a,b|ba™b~! = a"), for the whole
group centralises the infinite order element ™. In particular, hyperbolic groups cannot
contain any higher rank abelian subgroups, as Z? = BS(1, 1).

Another algebraic consequence of hyperbolicity is that one has strong control over
the torsion elements of the group. We examine a simple case to get an intuition for why
one should be able to draw such conclusions.

Example 1.6. Let G be a group acting geometrically on a simplicial tree T' (that is, a
O-hyperbolic graph), and let H < G be a finite subgroup. As H is finite, the orbit Hx of
any point x € T'is a finite set. Thus H fixes the barycentre of Hz; it is a subgroup of a
point stabiliser. Since the action is cocompact, there are finitely many conjugacy classes
of point stabilisers. Moreover, since the action is proper, each point stabiliser is finite.
It follows that there are only finitely many conjugacy classes of finite subgroups in G.

The general idea of the above example generalises to the hyperbolic of groups acting
geometrically on hyperbolic spaces, with some complications. In trees, it is easy to
define a centre for a finite set of points, while this is not so obvious in hyperbolic spaces
in general.



Theorem 1.7. Hyperbolic groups contain finitely many conjugacy classes of finite sub-
groups.

Proof. Let G be a hyperbolic group with a geometric action on a d-hyperbolic metric
space X. Let H < G be a finite subgroup. We will show that H preserves a quasi-centre
of its orbits. For a bounded subset Y C X, denote

Ry =inf{r >0|Y C B,(x) for some z € X},

and define the set
ClY)={z e X|Y C Bry+1(z)}.

This set is non-empty by definition of Ry. We claim that diam(C(Y)) < 44 + 2.

Let z,2" € C(Y), and let m be the midpoint of a geodesic [z,z']. Let y € Y be
an arbitrary point in Y. By hyperbolicity, there is a point ¢ on [z,y] or [2/,y] with
d(m,t) < §. Suppose without loss of generality that it is the former. Now

(y,t) + d(t,m)

d(y,m) < d(y,
(y,x) —d(z,t) + § < Ry + 1+ 26 — d(x, m).

<d
<d
On the other hand, there must be some y € Y with d(y,m) > Ry. Rearranging the
above equation for this y gives d(x,m) < 20 + 1. As m is the midpoint of [z, z'], the
claim follows.

Fix a point x € X, and let B C X be a compact subset such that G - B = X, which
exists as the action is cocompact. Write K = Ny5(B) and note that K is also compact as
X is proper. As the action is properly discontinuous, the set T'={g € G|gK N K # 0}
is finite. Thus T contains finitely many distinct subgroups.

The orbit Hzx is a bounded subset of X. As the orbit Hzx is setwise preserved by H,
the quasi-centre C'(Hx) is also setwise preserved by H. Moreover, there is some g € G
such that gO(Hx) N B # (), since G- B = X. Thus gHg ! setwise fixes the translate
gC(Hz). By the claim C(Hz) is a set of diameter at most 40 containing the identity,
which implies that gC(Hx) C K. Therefore gHg~! C T, completing the theorem. O

Hyperbolicity also allows one to rule out certain pathologies. A group in which
all elements have finite order is often called a torsion group, or a periodic group. One
pathology one might consider is that of being infinite while also having no elements of
infinite order, that is, being an infinite torsion group. Of course, there are many silly
examples of infinite torsion groups, such as an infinite direct product of finite groups, the
quotient group Q/Z, or the Priifer group Z(p™), but sensible groups generally tend not
to contain these. We will defer the proof until later on.

Theorem 1.8. A hyperbolic group contains no infinite torsion subgroups.

Remark 1.9. The existence of finitely generated infinite torsion groups was a for a long
time a major open problem in group theory known as the general Burnside problem.
After standing for over 60 years, a negative solution was given by Golod and Shafarevich



in 1964. The groups they constructed arose in connection with the class field tower
problem in number theory: they were interested in the infinitude of certain pro-p groups
arising as Galois groups of certain extensions. They established a bound that relates the
minimal number of relators and minimal number of generators for a finite p-group.

Another important property of hyperbolic groups is that they are, in a precise sense,
very large and have many quotients. This is captured more exactly by the following
theorem due to Ol’shanskii, which we is beyond the scope of this course.

Theorem 1.10. Let G be a non-elementary hyperbolic group. For any countable group
C, there is a normal subgroup N <1 G such that C' is isomorphic to a subgroup of G/N.

The property above is known as SQ-universality, and it satisfied by many of the
generalisations of hyperbolic groups as well.
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